Do you want to publish a course? Click here

Solar neutrinos: beyond standard solar models

107   0   0.0 ( 0 )
 Added by Marcello Lissia
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

After a short survey of the physics of solar neutrinos, giving an overview of hydrogen burning reactions, predictions of standard solar models and results of solar neutrino experiments, we discuss the solar-model-independent indications in favour of non-standard neutrino properties. The experimental results look to be in contradiction with each other, even disregarding some experiment: unless electron neutrinos disappear in their trip from the sun to the earth, the fluxes of intermediate energy neutrinos (those from 7Be electron capture and from the CNO cycle) result to be unphysically negative, or anyway extremely reduced with respect to standard solar model predictions. Next we review extensively non-standard solar models built as attempts to solve the solar neutrino puzzle. The dependence of the central solar temperature on chemical composition, opacity, age and on the values of the astrophysical S-factors for hydrogen-burning reactions is carefully investigated. Also, possible modifications of the branching among the various pp-chains in view of nuclear physics uncertainties are examined. Assuming standard neutrinos, all solar models examined fail in reconciling theory with experiments, even when the physical and chemical inputs are radically changed with respect to present knowledge and even if some of the experimental results are discarded.



rate research

Read More

We extract information on the fluxes of Be and CNO neutrinos directly from solar neutrino experiments, with minimal assumptions about solar models. Next we compare these results with solar models, both standard and non standard ones. Finally we discuss the expectations for Borexino, both in the case of standard and non standard neutrinos.
Solar neutrino experiments have yet to see directly the transition region between matter-enhanced and vacuum oscillations. The transition region is particularly sensitive to models of non-standard neutrino interactions and propagation. We examine several such non-standard models, which predict a lower-energy transition region and a flatter survival probability for the ^{8}B solar neutrinos than the standard large-mixing angle (LMA) model. We find that while some of the non-standard models provide a better fit to the solar neutrino data set, the large measured value of theta_{13} and the size of the experimental uncertainties lead to a low statistical significance for these fits. We have also examined whether simple changes to the solar density profile can lead to a flatter ^{8}B survival probability than the LMA prediction, but find that this is not the case for reasonable changes. We conclude that the data in this critical region is still too poor to determine whether any of these models, or LMA, is the best description of the data.
129 - Daniela Kirilova 2014
Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological effects and constraints. Particularly, the contemporary cosmological constraints on the number of neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino are briefly reviewed.
Recent solar neutrino results together with the assumption of a stationary Sun imply severe constraints on the individual components of the total neutrino flux : $Phi_{Be} leq 0.7 cdot 10^{9} cm^{-2} s^{-1}, Phi_{CNO} leq 0.6 cdot 10^{9} cm^{-2} s^{-1}$ and $64 cdot 10^{9} cm^{-2} s^{-1} leq Phi_{pp+pep} leq 65 cdot 10^{9} cm^{-2} s^{-1}$ (at 1$ sigma$ level), the constraint on $ u_{Be}$ being in strong disagreement with $Phi_{Be}^{SSM} = 5 cdot 10^{9} cm^{-2} s^{-1}$. We study a large variety of non-standard solar models with low inner temperatures, finding that the temperature profiles T(m) follow the homology relationship: T(m)=k$T(m)^{SSM}$, so that they are specified just by the central temperature $T_{c}$. There is no value of $T_{c}$ which can account for all the available experimental results and also if we restrict to consider just Gallium and Kamiokande results the fit is poor. Finally we discuss what can be learned from new generation experiments, planned for the detection of monochromatic solar neutrinos, about the properties of neutrinos and of the Sun.
We have evolved 10,000 solar models using 21 input parameters that are randomly drawn for each model from separate probability distributions for every parameter. We use the results of these models to determine the theoretical uncertainties in the predicted surface helium abundance, the profile of the sound speed versus radius, the profile of the density versus radius, the depth of the solar convective zone, the eight principal solar neutrino fluxes, and the fractions of nuclear reactions that occur in the CNO cycle or in the three branches of the p-p chains. We also determine the correlation coefficients of the neutrino fluxes for use in analysis of solar neutrino oscillations. Our calculations include the most accurate available input parameters, including radiative opacity, equation of state, and nuclear cross sections. We incorporate both the recently determined heavy element abundances recommended by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element abundances recommended by Grevesse & Sauval (1998). We present best-estimates of many characteristics of the standard solar model for both sets of recommended heavy element compositions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا