Do you want to publish a course? Click here

Limits to the 1/4 keV Extragalactic X-ray Background

72   0   0.0 ( 0 )
 Added by Wei Cui
 Publication date 1996
  fields Physics
and research's language is English
 Authors Wei Cui




Ask ChatGPT about the research

We observed several nearby face-on spiral galaxies with the ROSAT PSPC. The apparent deficiency in soft X-ray surface brightness observed at the outer portion of their disks is consistent with the absorption of the extragalactic soft X-ray background by material associated with these galaxies, and allows us to place a lower limit on the intensity of this cosmologically important background. From the depth of the soft X-ray shadow observed in NGC 3184, a 95% confidence lower limit was derived to be $32 keV cm^{-2} s^{-1} keV^{-1}$ at 1/4 keV. This was obtained by assuming that there is no unresolved 1/4 keV X-ray emission from the outer region of the galaxy which may otherwise partially fill in the shadow: any such emission, or any unresolved structure in the absorbing gas, would imply a larger value. In the deepest exposure to date in this energy range, Hasinger et al. (1993) resolved about $30 keV cm^{-2} s^{-1} keV^{-1}$ at 1/4 keV into discrete sources; our current limit is therefore consistent with an extragalactic origin for all of these sources. Our results can also be directly compared with the corresponding upper limit derived from the ROSAT PSPC detection of soft X-ray shadows cast by high-latitude clouds in Ursa Major, $simeq 65 keV cm^{-2} s^{-1} keV^{-1}$ at 1/4 keV. The lower and upper limits are only a factor of 2 apart, and begin to provide a reasonable measurement of the intensity of the 1/4 keV extragalactic X-ray background.



rate research

Read More

Snowden and coworkers have presented a model for the 1/4 keV soft X-ray diffuse background in which the observed flux is dominated by a ~ 10^6 K thermal plasma located in a 100-300 pc diameter bubble surrounding the Sun, but has significant contributions from a very patchy Galactic halo. Halo emission provides about 11% of the total observed flux and is responsible for half of the H I anticorrelation. The remainder of the anticorrelation is presumably produced by displacement of disk H I by the varying extent of the local hot bubble (LHB). The ROSAT R1 and R2 bands used for this work had the unique spatial resolution and statistical precision required for separating the halo and local components, but provide little spectral information. Some consistency checks had been made with older observations at lower X-ray energies, but we have made a careful investigation of the extent to which the model is supported by existing sounding rocket data in the Be (73-111 eV) and B bands (115-188 eV) where the sensitivities to the model are qualitatively different from the ROSAT bands. We conclude that the two-component model is well supported by the low-energy data. We find that these combined observations of the local component may be consistent with single-temperature thermal emission models in collisional ionization equilibrium if depleted abundances are assumed. However, different model implementations give significantly different results, offering little support for the conclusion that the astrophysical situation is so simple.
The Seyfert 2 galaxies NGC 2992 and NGC 3081 have been observed by INTEGRAL and Swift. We report about the results and the comparison of the spectrum above 10 keV based on INTEGRAL IBIS/ISGRI, Swift/BAT, and BeppoSAX/PDS. A spectrum can be extracted in the X-ray energy band ranging from 1 keV up to 200 keV. Although NGC 2992 shows a complex spectrum below 10 keV, the hard tail observed by various missions exhibits a slope with photon index = 2, independent on the flux level during the observation. No cut-off is detectable up to the detection limit around 200 keV. In addition, NGC 3081 is detected in the INTEGRAL and Swift observation and also shows an unbroken Gamma = 1.8 spectrum up to 150 keV. These two Seyfert galaxies give further evidence that a high-energy cut-off in the hard X-ray spectra is often located at energies E_C >> 100 keV. In NGC 2992 a constant spectral shape is observed over a hard X-ray luminosity variation by a factor of 11. This might indicate that the physical conditions of the emitting hot plasma are constant, while the amount of plasma varies, due to long-term flaring activity.
197 - S. Aune , F. Aznar , D. Calvet 2013
Micromegas detectors are an optimum technological choice for the detection of low energy x-rays. The low background techniques applied to these detectors yielded remarkable background reductions over the years, being the CAST experiment beneficiary of these developments. In this document we report on the latest upgrades towards further background reductions and better understanding of the detectors response. The upgrades encompass the readout electronics, a new detector design and the implementation of a more efficient cosmic muon veto system. Background levels below 10$^{-6}$keV$^{-1}$cm$^{-2}$s$^{-1}$ have been obtained at sea level for the first time, demonstrating the feasibility of the expectations posed by IAXO, the next generation axion helioscope. Some results obtained with a set of measurements conducted in the x-ray beam of the CAST Detector Laboratory will be also presented and discussed.
The information content of the autocorrelation function (ACF) of intensity fluctuations of the X-ray background (XRB) is analyzed. The tight upper limits set by ROSAT deep survey data on the ACF at arcmin scales imply strong constraints on clustering properties of X-ray sources at cosmological distances and on their contribution to the soft XRB. If quasars have a clustering radius r_0=12-20 Mpc (H_0=50), and their two point correlation function, is constant in comoving coordinates as indicated by optical data, they cannot make up more 40-50% of the soft XRB (the maximum contribution may reach 80% in the case of stable clustering, epsilon=0). Active Star-forming (ASF) galaxies clustered like normal galaxies, with r_0=10-12 Mpc can yield up to 20% or up to 40% of the soft XRB for epsilon=-1.2 or epsilon=0, respectively. The ACF on degree scales essentially reflects the clustering properties of local sources and is proportional to their volume emissivity. The upper limits on scales of a few degrees imply that hard X-ray selected AGNs have r_0<25 Mpc if epsilon=0 or r_0<20 Mpc if epsilon=-1.2. No significant constraints are set on clustering of ASF galaxies, due to their low local volume emissivity. The possible signal on scales >6 deg, if real, may be due to AGNs with r_0=20 Mpc; the contribution from clusters of galaxies with r_0~50 Mpc is a factor 2 lower.
The Solar neighborhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily-absorbed 1/4 keV X rays, coupled with the discovery that interstellar space within ~100 pc of the Sun is almost completely devoid of cool absorbing gas led to a picture of a local cavity filled with X-ray emitting hot gas dubbed the local hot bubble. This model was recently upset by suggestions that the emission could instead be produced readily within the solar system by heavy solar wind ions charge exchanging with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the existence of million-degree gas within the Galactic disk. Here we report results showing that the total solar wind charge exchange contribution is 40% +/- 5% (stat) +/- 5% (sys) of the 1/4 keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble of order 100 pc extent surrounding the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا