Do you want to publish a course? Click here

A Test of Gamma Ray Burst Recurrence in the BATSE 3B Data Set

196   0   0.0 ( 0 )
 Added by Dave Bennett
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the BATSE 3B catalog using the pair-matching statistic. This statistic counts only the burst pairs which may have originated from the same source, so it is less likely to yield false detections of ``repeating bursts than the nearest neighbor and correlation function statistics. Even in the ideal case when repeating is the only possible source of burst correlations, the pair matching statistic is more sensitive to repeating bursts than these other statistics particularly for models which predict faint or multiple burst repetitions. We find that the BATSE 3B data set contains no excess of matched burst pairs over the expectation from a sample with random positions. We also apply the pair-matching statistic to the bursts that previously appeared in the BATSE 1B catalog which now have improved positions and position errors in the BATSE 3B data set. Previously, these bursts had exhibited some peculiar position correlations that were interpreted by some as evidence for burst repetition, but we find that these correlations have disappeared with the improved BATSE 3B positions.



rate research

Read More

75 - V. Connaughton 2001
I discuss in this paper the phenomenon of post-burst emission in BATSE gamma-ray bursts at energies traditionally associated with prompt emission. By summing the background-subtracted signals from hundreds of bursts, I find that tails out to hundreds of seconds after the trigger may be a common feature of long events (duration greater than 2s), and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component appears independent of both the duration (within the long GRB sample) and brightness of the prompt burst emission, and may be softer. Some individual bursts have visible tails at gamma-ray energies and the spectrum in at least a few cases is different from that of the prompt emission.
We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs and fitted with five different spectral models resulting in a compendium of over 19000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in September 1997 (4B) to include improved locations for a subset of bursts that have been reprocssed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detected gamma-ray bursts (GRBs) with a real-time burst detection (or trigger) system running onboard the spacecraft. Under some circumstances, however, a GRB may not have activated the onboard burst trigger. For example, the burst may have been too faint to exceed the onboard detection threshold, or it may have occurred while the onboard burst trigger was disabled for technical reasons. This paper describes a catalog of 873 non-triggered GRBs that were detected in a search of the archival continuous data from BATSE, recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25--50 keV range; these events may represent the low-energy tail of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.
141 - J. Ripa , D. Huja , R. Hudec 2009
A sample of almost 400 Gamma-ray bursts (GRBs) detected by the RHESSI satellite is studied statistically. We focus on GRB duration and hardness ratio and use the statistical chi^2 test and the F-test to compare the number of GRB subgroups in the RHESSI database with that of the BATSE database. Although some previous articles based on the BATSE catalog claim the existence of an intermediate GRB subgroup, besides long and short, we have not found a statistically significant intermediate subgroup in the RHESSI data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا