Do you want to publish a course? Click here

EVOLUTION OF IR-SELECTED GALAXIES IN Z~0.4 CLUSTERS

67   0   0.0 ( 0 )
 Added by Adam Stanford
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

Wide-field optical and near--IR ($JHK$) imaging is presented for two rich galaxy clusters: Abell~370 at $z=0.374$ and Abell~851 (Cl0939+47) at $z=0.407$. Galaxy catalogs selected from the near--IR images are 90% complete to approximately 1.5 mag below $K^ast$ resulting in samples with $sim$100 probable member galaxies per cluster in the central $sim$2 Mpc. Comparison with $HST$ WFPC images yields subsamples of $sim$70 galaxies in each cluster with morphological types. Analysis of the complete samples and the $HST$ subsamples shows that the $zsim 0.4$ E/S0s are bluer than those in the Bower et al. (1992) Coma sample in the optical$-K$ color by $0.13$~mag for Abell~370 and by $0.18$~mag for Abell~851. If real, the bluing of the E/S0 populations at moderate redshift is consistent with that calculated from the Bruzual and Charlot (1993) models of passive elliptical galaxy evolution. In both clusters the intrinsic scatter of the known E/S0s about their optical$-K$ color--mag relation is small ($sim 0.06$ mag) and not significantly different from that of Coma E/S0s as given by Bower et al. (1992), indicating that the galaxies within each cluster formed at the same time at an early epoch.



rate research

Read More

Studying the transformation of cluster galaxies contributes a lot to have a clear picture of evolution of the universe. Towards that we are studying different properties (morphology, star formation, AGN contribution and metallicity) of galaxies in clusters up to $zsim1.0$ taking three different clusters: ZwCl0024+1652 at $zsim0.4$, RXJ1257+4738 at $zsim0.9$ and Virgo at $zsim0.0038$. For ZwCl0024+1652 and RXJ1257+4738 clusters we used tunable filters data from GLACE survey taken with GTC 10.4 m telescope and other public data, while for Virgo we used public data. We did the morphological classification of 180 galaxies in ZwCl0024+1652 using galSVM, where 54% and 46% of galaxies were classified as early-type (ET) and late-type (LT) respectively. We did a comparison between the three clusters within the clustercentric distance of 1Mpc and found that ET proportion (decreasing with redshift) dominates over the LT (increasing with redshift) throughout. We finalized the data reduction for ZwCl0024+1652 cluster and identified 46 [OIII] and 73 H$beta$ emission lines. For this cluster we have classified 22 emission line galaxies (ELGs) using BPT-NII diagnostic diagram resulting with 14 composite, 1 AGN and 7 star forming (SF) galaxies. We are using these results, together with the public data, for further analysis of the variations of properties in relation to redshift within $z<1.0$.
The study of intracluster light can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z<0.4.We search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4<z<0.8, that are also part of our DAFT/FADA Survey. We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8sigma detection in the source center extending over a ~50x50kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L* galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence for any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z=0 and z=0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters. We have shown that ICL is important in clusters at least up to z=0.8.
205 - Sean L. McGee 2008
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disk population. At both redshifts, the disks of group galaxies have similar scaling relations and show similar median asymmetries as the disks of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z=0.4 and z=0 using the semi-analytic galaxy catalogues of Bower et al (2006). This model accurately reproduces the B/T distributions of the group and field at z=0.1. However, the model does not reproduce our finding that the deficit of disks in groups has increased significantly since z=0.4.
97 - R.F. Mushotzky 1997
We have obtained the first large sample of accurate temperatures for clusters at z>0.14 from ASCA. We compare the luminosity temperature (L-T) distribution for these clusters with the low redshift sample of David et al (1993) and find that there is no evidence for evolution. We also find that the intrinsic variance in this relation is roughly constant with redshift. Additionally, there is no detectable change in the relationship of optical velocity dispersion to X-ray temperature with redshift. Most cosmological simulations driven primarily by gravity predict substantial changes in the L-T relation due to the recent rapid growth of clusters. Our results are consistent either with models in which the cluster core entropy is dominated by pre-heating, or with low Omega models in which cluster structure does not evolve strongly with time. The intrinsic variance in the L-T relation at a fixed redshift can be due a variety of possibilites e.g. a change in the baryonic fraction from cluster to cluster, variation in the fraction of the total energy in the system arising from shocks or supernova heating or variations in the emission measure distributions in multiphase gas.
442 - F. E. Bauer 2005
We present a Chandra study of 38 X-ray luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at z~0.15-0.4. We find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially-resolved spectral analyses, cool cores appear to still be common at these redshifts. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling [t(cool)<10 Gyr], while in the central bin at least 34 per cent demonstrate signs of strong cooling [t(cool)<2 Gyr]. These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, suggesting little evolution in cluster cores since z~0.4 and that heating and cooling mechanisms may already have stabilised by this epoch. Comparing the central cooling times to central Halpha emission in BCS clusters, we find a strong correspondence between the detection of Halpha and central cooling time. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا