Do you want to publish a course? Click here

The Detection of Far Ultraviolet Line Emission from Balmer-Dominated Supernova Remnants in the Large Magellanic Cloud

102   0   0.0 ( 0 )
 Added by Parviz Ghavamian
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first far ultraviolet (FUV) spectra of the four known Balmer-dominated supernova remnants (SNRs) in the Large Magellanic Cloud, acquired with the Far Ultraviolet Spectroscopic Explorer. The remnants DEM L 71 (0505-67.9), 0509-67.5, 0519-69.0 and 0548-70.4 are all in the non-radiative stages of evolution and exhibit expansion speeds ranging from ~ 500 km/s to ~ 5000 km/s. We have detected broad emission lines of Ly beta, Ly gamma, C III and O VI in DEM L 71 (V(FWHM) ~ 1000 km/s) and have detected broad Ly beta and O VI emission in 0519-69.0, (V(FWHM) ~ 3000 km/s). In addition, broad Ly beta emission (V(FWHM) ~ 3700 km/s) has been observed in 0509-67.5, the first detection of broad line emission from this SNR. No emission was detected in our FUSE spectrum of 0548-70.4, allowing us to place only upper limits on the FUV line fluxes. The spectra of these SNRs are unaffected by postshock cooling, and provide valuable probes of collisionless heating efficiency in high Mach number shocks. We have used the Ly beta / O VI flux ratio and relative widths of the broad Ly beta and O VI lines to estimate the degree of electron-proton and proton-oxygen ion equilibration in DEM L 71, 0509-67.5, and 0519-69.0. Although our equilibration estimates are subject to considerable uncertainty due to the faintness of the FUV lines and contributions from bulk Doppler broadening, our results are consistent with a declining efficiency of electron- proton and proton-oxygen ion equilibration with increasing shock speed. From our shock velocity estimates we obtain ages of 295-585 years for 0509-67.5 and 520-900 years for 0519-69.0, respectively, in good agreement with the ages obtained from SN light echo studies.



rate research

Read More

127 - William P. Blair 2000
We report a Far Ultraviolet Spectroscopic Explorer satellite observation of the supernova remnant N49 in the Large Magellanic Cloud, covering the 905 -- 1187 A spectral region. A 30 square aperture was used, resulting in a velocity resolution of ~100 km/s. The purpose of the observation was to examine several bright emission lines expected from earlier work and to demonstrate diffuse source sensitivity by searching for faint lines never seen previously in extragalactic supernova remnant UV spectra. Both goals were accomplished. Strong emission lines of O VI 1031.9 A, 1037.6 A and C III 977.0 A were seen, Doppler broadened to +/- 225 km/s and with centroids red-shifted to 350 km/s, consistent with the LMC. Superimposed on the emission lines are absorptions by C III and O VI 1031.9 at +260 km/s, which are attributed to warm and hot gas (respectively) in the LMC. The O VI 1037.6 A line is more severely affected by overlying interstellar and H2 absorption from both the LMC and our galaxy. N III 989.8 A is not seen, but models indicate overlying absorption severely attenuates this line. A number of faint lines from hot gas have also been detected, many of which have never been seen in an extragalactic supernova remnant spectrum.
352 - K. M. Desai 2010
It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud to search for associated young stellar objects (YSOs) and molecular clouds. We find seven SNRs associated with both YSOs and molecular clouds, three SNRs associated with YSOs but not molecular clouds, and eight SNRs near molecular clouds but not associated with YSOs. Among the 10 SNRs associated with YSOs, the association between the YSOs and SNRs can be either rejected or cannot be convincingly established for eight cases. Only two SNRs have YSOs closely aligned along their rims; however, the time elapsed since the SNR began to interact with the YSOs natal clouds is much shorter than the contraction timescales of the YSOs, and thus we do not see any evidence of SNR-triggered star formation in the LMC. The 15 SNRs that are near molecular clouds may trigger star formation in the future when the SNR shocks have slowed down to <45 km/s. We discuss how SNRs can alter the physical properties and abundances of YSOs.
We present a new optical sample of three Supernova Remnants and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud(LMC). These objects were originally selected using deep H$alpha$, [SII] and [OIII] narrow-band imaging. Most of the newly found objects are located in less dense regions, near or around the edges of the LMCs main body. Together with previously suggested MCSNR J0541-6659, we confirm the SNR nature for two additional new objects: MCSNR J0522-6740 and MCSNRJ0542-7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [SII]/H$alpha$ a emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509-6402 to be a special example of the remnant of a possible Type Ia Supernova which is situated some 2$^circ$ ($sim 1.75$kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of $sim 2$. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.
We present the near- to mid-infared study of supernova remnants (SNRs) using the AKARI IRC Survey of the Large Magellanic Cloud (LMC). The LMC survey observed about a 10 square degree area of the LMC in five bands centered at 3, 7, 11, 15, and 24 micron using the Infrared Camera (IRC) aboard AKARI. The number of SNRs in the survey area is 21, which is about a half of the known LMC SNRs. We systematically examined the AKARI images and identified eight SNRs with distinguishable infrared emission. All of them were detected at $gtrsim 10$ micron and some at 3 and 7 micron, too. We present their AKARI images and fluxes. In the 11/15 micron versus 15/24 micron color-color diagram, the SNRs appear to be aligned along a modified blackbody curve, representing thermal emission from dust at temperatures between 90 and 190 K. There is a good correlation between the 24 micron and X-ray fluxes of the SNRs. It was also found that there is a good correlation between the 24 micron and radio fluxes even if there is no direct physical connection between them. We considered the origin of the detected mid-infrared emission in individual SNRs. We conclude that the mid-infrared emissions in five SNRs that show morphologies similar to the X-rays are dominated by thermal emission from hot dust heated by X-ray emitting plasma. Their 15/24 micron color temperatures are generally higher than the Spitzer 24/70 micron color temperatures, which suggests that a single-temperature dust model cannot describe the full spectral energy distribution (SED) of the SNRs. It also implies that our understanding of the full SED is essential for estimating the dust destruction rate of grains by SNR shocks.
We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their host galaxy. We combined all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produced X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modelling of the background, we consistently analysed all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. We investigated the spatial distribution of SNRs in the LMC and the connection with their environment, characterised by various SFHs. We tentatively typed all LMC SNRs to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We compared the X-ray-derived column densities to HI maps to probe the three-dimensional structure of the LMC. This work provides the first homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are found to be 0.2-0.5 solar, with a lower [$alpha$/Fe] than in the Milky Way. The ratio of CC/type Ia SN in the LMC is $N_{mathrm{CC}}/N_{mathrm{Ia}} = 1.35(_{-0.24}^{+0.11})$, lower than in local SN surveys and galaxy clusters. Comparison of X-ray luminosity functions of SNRs in Local Group galaxies reveals an intriguing excess of bright objects in the LMC. We confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC, to the far and near sides, respectively. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا