Do you want to publish a course? Click here

Oxygen abundance of open cluster dwarfs

86   0   0.0 ( 0 )
 Added by Zhixia Shen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present oxygen abundances of dwarfs in the young open cluster IC 4665 deduced from the OI $lambda$7774 triplet lines and of dwarfs in the open cluster Pleiades derived from the [OI] $lambda$6300 forbidden line. Stellar parameters and oxygen abundances were derived using the spectroscopic synthesis tool SME (Spectroscopy Made Easy). We find a dramatic increase in the upper boundary of the OI triplet abundances with decreasing temperature in the dwarfs of IC 4665, consistent with the trend found by Schuler et al. in the open clusters Pleiades and M 34, and to a less extent in the cool dwarfs of Hyades (Schuler et al. 2006a) and UMa (King & Schuler 2005). By contrast, oxygen abundances derived from the [OI] $lambda$6300 forbidden line for stars in Pleiades and Hyades (Schuler et al. 2006b) are constant within the errors. Possible mechanisms that may lead a varying oxygen triplet line abundance are examined, including systematic errors in the stellar parameter determinations, the NLTE effects, surface activities and granulation. The age-related effects stellar surface activities (especially the chromospheric activities) are suggested by our analysis to blame for the large spreads of oxygen triplet line abundances.



rate research

Read More

151 - Z.-X. Shen 2005
We report a detailed spectroscopic abundance analysis for a sample of 18 F-K dwarfs of the young open cluster IC 4665. Stellar parameters and element abundances of Li, O, Mg, Si, Ca, Ti, Cr, Fe and Ni have been derived using the spectroscopic synthesis tool SME (Spectroscopy Made Easy). Within the measurement uncertainties the iron abundance is uniform with a standard deviation of 0.04 dex. No correlation is found between the iron abundance and the mass of the stellar convective zone, and between the Li abundance and the Fe abundance. In other words, our results do not reveal any signature of accretion and therefore do not support the scenario that stars with planets (SWPs) acquire their on the average higher metallicity compared to field stars via accretion of metal-rich planetary material. Instead the higher metallicity of SWPs may simply reflect the fact that planet formation is more efficient in high metallicity environs. However, since that many details of the planet system formation processes remain poorly understood, further studies are needed for a final settlement of the problem of the high metallicity of SWPs. The standard deviation of [Fe/H] deduced from our observations, taken as an upper limit on the metallicity dispersion amongst the IC 4665 member stars, has been used to constrain proto-planetary disk evolution, terrestrial and giant planets formation and evolution processes. Our results do not support the possibility that the migration of gas giants and the circularization of terrestrial planets orbits are regulated by their interaction with a residual population of planetesimals and dust particles.
Oxygen abundances have been derived from the near-IR, high-excitation Lambda 7774 O I triplet in high-resolution, high signal-to-noise spectra of 45 Hyades dwarfs using standard one dimensional, plane-parallel LTE models. Effective temperatures of the stellar sample range from 4319-6301 K, and the derived relative O abundances as a function of T_eff evince a trichotomous morphology. At T_eff > 6100 K, there is evidence of an increase in the O abundances with increasing T_eff, consistent with non-LTE (NLTE) predictions. At intermediate T_eff (5450 < T_eff < 6100 K), the O abundances are flat, and star-to-star values are in good agreement, having a mean value of [O/H] = +0.25 +/- 0.02; however, systematic errors at the ~0.10 dex level might exist. The O abundances for stars with T_eff < 5450 K show a striking increase with decreasing T_eff, in stark contrast to expectations and canonical NLTE calculations. The cool Hyades triplet results are compared to those recently reported for dwarfs in the Pleiades cluster and the UMa moving group; qualitative differences between the trends observed in these stellar aggregates point to a possible age-related diminution of triplet abundance trends in cool open cluster dwarfs. Correlations with age-related phenomena, i.e., chromospheric activity and photospheric spots, faculae, and/or plages, are investigated. No correlation with Ca II H+K chromospheric activity indicators is observed. Multi-component LTE ``toy models have been constructed in order to simulate photospheric temperature inhomogeneities that could arise from the presence of starspots, and we demonstrate that photospheric spots are a plausible source of the triplet trends among the cool dwarfs.
We have derived accurate and homogeneous Lithium abundances in 49 main sequence binary systems belonging to the Hyades Open Cluster by using a deconvolution method to determine individual magnitudes and colors for the primary and secondary components of the binary. The input parameters of the model are the observed Li equivalent width, the actual distance to the binary, the integrated apparent magnitude and the integrated colors of the binaries -BV(RI)_K. We show that the general behavior is the same in binaries and in single stars (Li is depleted faster in K stars than in G stars and there is a deep dip for mid-F stars). However, there is a larger scatter in the abundances of binary systems than in single stars. Moreover, in general, binary systems have an overabundance, which is more conspicuous in close binaries. In fact, there is a cut-off period, which can be estimated as P(orb)~9 d. This value is in excellent agreement with the theoretical predition of Zahn (1994).
Motivated by the controversy over the surface metallicity of the Sun, we present a re-analysis of the solar photospheric oxygen (O) abundance. New atomic models of O and Ni are used to perform Non-Local Thermodynamic Equilibrium (NLTE) calculations with 1D hydrostatic (MARCS) and 3D hydrodynamical (Stagger and Bifrost) models. The Bifrost 3D MHD simulations are used to quantify the influence of the chromosphere. We compare the 3D NLTE line profiles with new high-resolution, R = 700 000, spatially-resolved spectra of the Sun obtained using the IAG FTS instrument. We find that the O I lines at 777 nm yield the abundance of log A(O) = 8.74 +/- 0.03 dex, which depends on the choice of the H-impact collisional data and oscillator strengths. The forbidden [O I] line at 630 nm is less model-dependent, as it forms nearly in LTE and is only weakly sensitive to convection. However, the oscillator strength for this transition is more uncertain than for the 777 nm lines. Modelled in 3D NLTE with the Ni I blend, the 630 nm line yields an abundance of log A(O) = 8.77 +/- 0.05 dex. We compare our results with previous estimates in the literature and draw a conclusion on the most likely value of the solar photospheric O abundance, which we estimate at log A(O) = 8.75 +/- 0.03 dex.
We have obtained high resolution spectra of $sim$40 members of M35, determined the Lithium-T$_{rm{eff}}$ morphology and the distribution of the rotational velocity for G and K stars, and compared them to those of the Pleiades and other well-known open clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا