No Arabic abstract
We present results on the X-ray and optical/UV emission from the type IIP SN 2006bp and the interaction of the SN shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigma level of significance in the merged XRT data from days 1 to 12 after the explosion. If the X-ray luminosity of (1.8+/-0.4)E39 ergs/s is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitors companion star, a mass-loss rate of ~E-05 M_sun/yr is inferred. The mass-loss rate is consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion and characteristic of a red supergiant progenitor with a mass around 12-15 M_sun prior to the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline with index 1.2+/-0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since type IIP SNe have an extended plateau phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (~10-100) we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and cooling of the expanding photosphere during the first few weeks after the outburst.
We have compiled a catalog of optically-selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma Ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both UVOT and XRT observations and 354 of which are detected by both instruments. The overall X-ray detection rate is ~60% which rises to ~85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about 0.3 dex to the quasar luminosity. We re-visit the alpha_ox-L_uv relation by selecting a clean sample with only type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared to studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L/L_Edd and alpha_uv. We do not find significant correlations between alpha_x and alpha_ox, alpha_ox and alpha_uv, and alpha_x and Log L(0.3-10 keV). The correlations between alpha_uv and alpha_x, alpha_ox and alpha_x, alpha_ox and alpha_uv, L/L_Edd and alpha_x, and L/L_Edd and alpha_ox are stronger amongst low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.
We present the systematic analysis of the UVOT and XRT light curves for a sample of 26 Swift Gamma-Ray Bursts (GRBs). By comparing the optical/UV and X-ray light curves, we found that they are remarkably different during the first 500s after the BAT trigger, while they become more similar during the middle phase of the afterglow, i.e. between 2000s and 20000s. If we take literally the average properties of the sample, we find that the mean temporal indices observed in the optical/UV and X-rays after 500s are consistent with a forward-shock scenario, under the assumptions that electrons are in the slow cooling regime, the external medium is of constant density and the synchrotron cooling frequency is situated between the optical/UV and X-ray observing bands. While this scenario describes well the averaged observed properties, some individual GRB afterglows require different or additional assumptions, such as the presence of late energy injection. We show that a chromatic break (a break in the X-ray light curve that is not seen in the optical) is present in the afterglows of 3 GRBs and demonstrate evidence for chromatic breaks in a further 4 GRBs. The average properties of these breaks cannot be explained in terms of the passage of the synchrotron cooling frequency through the observed bands, nor a simple change in the external density. It is difficult to reconcile chromatic breaks in terms of a single component outflow and instead, more complex jet structure or additional emission components are required.
Supernova (SN) 2018cow (or AT2018cow) is an optical transient detected in the galaxy CGCG 137-068. It has been classified as a SN due to various characteristics in its optical spectra. The transient is also a bright X-ray source. We present results of the analysis of ~62ks of X-ray observations taken with the Neil Gehrels Swift Observatory over 27 days. We found a variable behavior in the 0.3-10 keV X-ray light curve of SN 2018cow, with variability timescales of days. The observed X-ray variability could be due to the interaction between the SN ejecta and a non-uniform circumstellar medium, perhaps related to previous mass ejections from a luminous-blue-variable-like progenitor.
We report the results of intensive X-ray, UV and optical monitoring of the Seyfert 1 galaxy NGC 4593 with Swift. There is no intrinsic flux-related spectral change in the the variable components in any band with small apparent variations due only to contamination by a second constant component, possibly a (hard) reflection component in the X-rays and the (red) host galaxy in the UV/optical bands. Relative to the shortest wavelength band, UVW2, the lags of the other UV and optical bands are mostly in agreement with the predictions of reprocessing of high energy emission from an accretion disc. The U-band lag is, however, far larger than expected, almost certainly because of reprocessed Balmer continuum emission from the more distant broad line region gas. The UVW2 band is well correlated with the X-rays but lags by ~6x more than expected if the UVW2 results from reprocessing of X-rays on the accretion disc. However, if the lightcurves are filtered to remove variations on timescales >5d, the lag approaches the expectation from disc reprocessing. MEMEcho analysis shows that direct X-rays can be the driver of most of the variations in the UV/optical bands as long as the response functions for those bands all have long tails (up to 10d) in addition to a strong peak (from disc reprocessing) at short lag (<1d). We interpret the tails as due to reprocessing from the surrounding gas. Comparison of X-ray to UVW2 and UVW2 to V-band lags for 4 AGN, including NGC 4593, shows that all have UVW2 to V-band lags which exceed the expectations from disc resprocessing by factor < 2. However the X-ray to UVW2 lags are, mostly, in greater excess from the expectations from disc reprocessing and differ between AGN. The largest excess is in NGC 4151. Absorption and scattering may be affecting X-ray to UV lags.
Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of the largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.