Do you want to publish a course? Click here

Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium

48   0   0.0 ( 0 )
 Added by Daisuke Nagai
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the non-radiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment and stellar feedback. We show that the observed ICM properties outside cluster cores are well-reproduced in the simulations that include cooling and star formation, while the non-radiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. The X-ray observable-total mass relations for our simulated sample agree with the Chandra measurements to ~10%-20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging and the existence of tight relations of X-ray observables, such as Yx, and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes.



rate research

Read More

We investigate the metal enrichment of the intracluster medium (ICM) in the framework of hierarchical models of galaxy formation. We calculate the formation and evolution of galaxies and clusters using a semi-analytical model which includes the effects of flows of gas and metals both into and out of galaxies. For the first time in a semi-analytical model, we calculate the production of both alpha and iron-peak elements based on theoretical models for the lifetimes and ejecta of type Ia and type II supernovae (SNe Ia and SNe II). It is essential to include the long lifetimes of the SNIa progenitors in order to correctly model the evolution of the iron-peak elements. We find that if all stars form with an IMF similar to that found in the solar neighbourhood, then the metallicities of O, Mg, Si and Fe in the ICM are predicted to be 2-3 times lower than observed values. In contrast, a model (also favoured on other grounds) in which stars formed in bursts triggered by galaxy mergers have a top-heavy IMF reproduces the observed ICM abundances of O, Mg, Si and Fe. The same model predicts ratios of ICM mass to total stellar luminosity in clusters which agree well with observations. According to our model, the bulk of the metals in clusters are produced by L* and brighter galaxies. [abridged]
Several types/classes of shocks naturally arise during formation and evolution of galaxy clusters. One such class is represented by accretion shocks, associated with deceleration of infalling baryons. Such shocks, characterized by a very high Mach number, are present even in 1D models of cluster evolution. Another class is composed of runaway merger shocks, which appear when a merger shock, driven by a sufficiently massive infalling subcluster, propagates away from the main-cluster center. We argue that, when the merger shock overtakes the accretion shock, a new long-living shock is formed that propagates to large distances from the main cluster (well beyond its virial radius) affecting the cold gas around the cluster. We refer to these structures as Merger-accelerated Accretion shocks (MA-shocks) in this paper. We show examples of such MA-shocks in 1D and 3D simulations and discuss their characteristic properties. In particular, (1) MA-shocks shape the boundary separating the hot intracluster medium (ICM) from the unshocked gas, giving this boundary a flower-like morphology. In 3D, MA-shocks occupy space between the dense accreting filaments. (2) Evolution of MA-shocks highly depends on the Mach number of the runaway merger shock and the mass accretion rate parameter of the cluster. (3) MA-shocks may lead to the misalignment of the ICM boundary and the splashback radius.
140 - Ian J. Parrish 2012
In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii-MHD simulations of galaxy clusters including both of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBIs nonlinear saturation, in part because three-dimensional interchange motions (magnetic flux tubes slipping past each other) are not damped by anisotropic viscosity. In global simulations of cool core clusters, we show that the HBI robustly inhibits radial thermal conduction and thus precipitates a cooling catastrophe. The effects of viscosity are, however, more important for higher entropy clusters. We argue that viscosity can contribute to the global transition of cluster cores from cool-core to non cool-core states: additional sources of intracluster turbulence, such as can be produced by AGN feedback or galactic wakes, suppress the HBI, heating the cluster core by thermal conduction; this makes the ICM more viscous, which slows the growth of the HBI, allowing further conductive heating of the cluster core and a transition to a non cool-core state.
To determine the relative contributions of galactic and intracluster stars to the enrichment of the intracluster medium (ICM), we present X-ray surface brightness, temperature, and Fe abundance profiles for a set of twelve galaxy clusters for which we have extensive optical photometry. Assuming a standard IMF and simple chemical evolution model scaled to match the present-day cluster early-type SN Ia rate, the stars in the brightest cluster galaxy (BCG) plus the intracluster stars (ICS) generate 31^{+11}_{-9}%, on average, of the observed ICM Fe within r_{500} (~ 0.6 times r_{200}, the virial radius). An alternate, two-component SN Ia model (including both prompt and delayed detonations) produces a similar BCG+ICS contribution of 22^{+9}_{-9}%. Because the ICS typically contribute 80% of the BCG+ICS Fe, we conclude that the ICS are significant, yet often neglected, contributors to the ICM Fe within r_{500}. However, the BCG+ICS fall short of producing all the Fe, so metal loss from stars in other cluster galaxies must also contribute. By combining the enrichment from intracluster and galactic stars, we can account for all the observed Fe. These models require a galactic metal loss fraction (0.84^{+0.11}_{-0.14}) that, while large, is consistent with the metal mass not retained by galactic stars. The SN Ia rates, especially as a function of galaxy environment and redshift, remain a significant source of uncertainty in further constraining the metal loss fraction. For example, increasing the SN Ia rate by a factor of 1.8 -- to just within the 2 sigma uncertainty for present-day cluster early-type galaxies -- allows the combined BCG + ICS + cluster galaxy model to generate all the ICM Fe with a much lower galactic metal loss fraction (~ 0.35).
We use cosmological simulations in order to study the effects of supernova (SN) feedback on the formation of a Milky Way-type galaxy of virial mass ~10^12 M_sun/h. We analyse a set of simulations run with the code described by Scannapieco et al. (2005, 2006), where we have tested our star formation and feedback prescription using isolated galaxy models. Here we extend this work by simulating the formation of a galaxy in its proper cosmological framework, focusing on the ability of the model to form a disk-like structure in rotational support. We find that SN feedback plays a fundamental role in the evolution of the simulated galaxy, efficiently regulating the star formation activity, pressurizing the gas and generating mass-loaded galactic winds. These processes affect several galactic properties such as final stellar mass, morphology, angular momentum, chemical properties, and final gas and baryon fractions. In particular, we find that our model is able to reproduce extended disk components with high specific angular momentum and a significant fraction of young stars. The galaxies are also found to have significant spheroids composed almost entirely of stars formed at early times. We find that most combinations of the input parameters yield disk-like components, although with different sizes and thicknesses, indicating that the code can form disks without fine-tuning the implemented physics. We also show how our model scales to smaller systems. By analysing simulations of virial masses 10^9 M_sun/h and 10^10 M_sun/h, we find that the smaller the galaxy, the stronger the SN feedback effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا