Do you want to publish a course? Click here

The Observed properties of Dark Matter on small spatial scales

185   0   0.0 ( 0 )
 Added by Gerry Gilmore
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a synthesis of recent photometric and kinematic data for several of the most dark-matter dominated galaxies. There is a bimodal distribution in half-light radii, with stable star clusters always being smaller than $sim30$pc, while stable galaxies are always larger than $sim120$pc. We extend the previously known observational relationships and interpret them in terms of a more fundamental pair of intrinsic properties of dark matter itself: dark matter forms cored mass distributions, with a core scale length of greater than about 100pc, and always has a maximum central massdensity with a narrow range. The dark matter in dSph galaxies appears to be clustered such that there is a mean volume mass density within the stellar distribution which has the very low value of about 0.1$Msun$ pc$^{-3}$ (about 5GeV/c$^2$ cm$^{-3}$). All dSphs have velocity dispersions equivalent to circular velocities at the edge of their light distributions of $sim 15$km s$^{-1}$. In two dSphs there is evidence that the density profile is shallow (cored) in the inner regions, and so far none of the dSphs display kinematics which require the presence of an inner cusp. The maximum central dark matter density derived is model dependent, but is likely to have a mean value (averaged over a volume of radius 10pc) of $sim0.1Msun$ pc$^{-3}$ (about 5GeV/c$^2$ cm$^{-3}$) for our proposed cored dark mass distributions (where it is similar to the mean value), or $sim60Msun$ pc$^{-3}$ (about 2TeV/c$^2$ cm$^{-3}$) if the dark matter density distribution is cusped. Galaxies are embedded in dark matter halos with these properties; smaller systems containing dark matter are not observed.



rate research

Read More

105 - Gerard Gilmore 2007
This article reviews recent progress in observational determination of the properties of dark matter on small astrophysical scales, and progress towards the European Extremely Large Telescope. Current results suggest some surprises: the central DM density profile is typically cored, not cusped, with scale sizes never less than a few hundred pc; the central densities are typically 10-20GeV/cc; no galaxy is found with a dark mass halo less massive than $sim5.10^7M_{odot}$. We are discovering many more dSphs, which we are analysing to test the generality of these results. The European Extremely Large Telescope Design Study is going forward well, supported by an outstanding scientific case, and founded on detailed industrial studies of the technological requirements.
Using the Reduced Relativistic Gas (RRG) model, we analytically determine the matter power spectrum for Warm Dark Matter (WDM) on small scales, $k>1 htext{/Mpc}$. The RRG is a simplified model for the ideal relativistic gas, but very accurate in the cosmological context. In another work, we have shown that, for typical allowed masses for dark matter particles, $m>5 text{keV}$, the higher order multipoles, $ell>2$, in the Einstein-Boltzmann system of equations are negligible on scales $k<10 htext{/Mpc}$. Hence, we can follow the perturbations of WDM using the ideal fluid framework, with equation of state and sound speed of perturbations given by the RRG model. We derive a Meszaros like equation for WDM and solve it analytically in radiation, matter and dark energy dominated eras. Joining these solutions, we get an expression that determines the value of WDM perturbations as a function of redshift and wavenumber. Then we construct the matter power spectrum and transfer function of WDM on small scales and compare it to some results coming from Lyman-$alpha$ forest observations. Besides being a clear and pedagogical analytical development to understand the evolution of WDM perturbations, our power spectrum results are consistent with the observations considered and the other determinations of the degree of warmness of dark matter particles.
One of the open questions in modern cosmology is the small scale crisis of the cold dark matter paradigm. Increasing attention has recently been devoted to self-interacting dark matter models as a possible answer. However, solving the so-called missing satellites problem requires in addition the presence of an extra relativistic particle (dubbed dark radiation) scattering with dark matter in the early universe. Here we investigate the impact of different theoretical models devising dark matter dark radiation interactions on large scale cosmological observables. We use cosmic microwave background data to put constraints on the dark radiation component and its coupling to dark matter. We find that the values of the coupling allowed by the data imply a cut-off scale of the halo mass function consistent with the one required to match the observations of satellites in the Milky Way.
We present the results of the Cosmogrid cosmological N-body simulation suites based on the concordance LCDM model. The Cosmogrid simulation was performed in a 30Mpc box with 2048^3 particles. The mass of each particle is 1.28x10^5 Msun, which is sufficient to resolve ultra-faint dwarfs. We found that the halo mass function shows good agreement with the Sheth & Tormen fitting function down to ~10^7 Msun. We have analyzed the spherically averaged density profiles of the three most massive halos which are of galaxy group size and contain at least 170 million particles. The slopes of these density profiles become shallower than -1 at the inner most radius. We also find a clear correlation of halo concentration with mass. The mass dependence of the concentration parameter cannot be expressed by a single power law, however a simple model based on the Press-Schechter theory proposed by Navarro et al. gives reasonable agreement with this dependence. The spin parameter does not show a correlation with the halo mass. The probability distribution functions for both concentration and spin are well fitted by the log-normal distribution for halos with the masses larger than ~10^8 Msun. The subhalo abundance depends on the halo mass. Galaxy-sized halos have 50% more subhalos than ~10^{11} Msun halos have.
131 - G Gilmore , M Wilkinson , J Kleyna 2006
The Milky Way satellite dwarf spheroidal (dSph) galaxies are the smallest dark matter dominated systems in the universe. We have underway dynamical studies of the dSph to quantify the shortest scale lengths on which Dark Matter is distributed, the range of Dark Matter central densities, and the density profile(s) of DM on small scales. Current results suggest some surprises: the central DM density profile is typically cored, not cusped, with scale sizes never less than a few hundred pc; the central densities are typically 10-20 GeV/cc; no galaxy is found with a dark mass halo less massive than ~5.10^7 M_sun. We are discovering many more dSphs, which we are analysing to test the generality of these results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا