No Arabic abstract
We present the culmination of our near-infrared survey of the optically spectroscopically identified white dwarf stars from the McCook & Sion catalog, conducted using photometric data from the Two Micron All Sky Survey final All Sky Data Release. The color-selection technique, which identifies candidate binaries containing a white dwarf and a low mass stellar (or sub-stellar) companion via their distinctive locus in the near-infrared color-color diagram, is demonstrated to be simple to apply and to yield candidates with a high rate of subsequent confirmation. We recover 105 confirmed binaries, and identify 28 firm candidates (20 of which are new to this work) and 21 tentative candidates (17 of which are new to this work) from the 2MASS data. Only a small number of candidates from our survey have likely companion spectral types later than M5, none of which is an obvious L type (i.e., potential brown dwarf) companion. Only one previously known WD + brown dwarf binary is detected. This result is discussed in the context of the 2MASS detection limits, as well as other recent observational surveys that suggest a very low rate of formation (or survival) for binary stars with extreme mass ratios.
We introduce the properties of the Two Micron All-Sky Survey (2MASS) survey for IAU Symposium 204. 2MASS is a near-infrared survey of the entire sky characterized by high reliability and completeness. Catalogs and images for 47% of the sky are now available online. This data release has been used by Wright (2000) and Cambresy et al. (2000) to subtract the stellar foreground at 1.25 and 2.2 microns from COBE DIRBE data, revealing the cosmological near-infrared background.
We present two confirmed wide separation L-dwarf common proper motion companions to nearby stars and one candidate identified from the Two Micron All Sky Survey. Spectral types from optical spectroscopy are L0 V, L2.5 V, and L8 V. Near-infrared low resolution spectra of the companions are provided as well as a grid of known objects spanning M6 V -- T dwarfs to support spectral type assignment for these and future L-dwarfs in the zJHK bands. Using published measurements, we estimate ages of the companions from physical properties of the primaries. These crude ages allow us to estimate companion masses using theoretical low-mass star and brown dwarf evolutionary models. The new L-dwarfs in this paper bring the number of known wide-binary (Separation >= 100 AU) L-dwarf companions of nearby stars to nine. One of the L-dwarfs is a wide separation companion to the F7 IV-V + extrasolar planet system HD89744Ab.
Using data from the 2MASS All-Sky Point Source Catalogue, we have extended our census of nearby ultracool dwarfs to cover the full celestial sphere above Galactic latitute 15 degrees. Starting with an initial catalogue of 2,139,484 sources, we have winnowed the sample to 467 candidate late-type M or L dwarfs within 20 parsecs of the Sun. Fifty-four of those sources already have spectroscopic observations confirming them as late-type dwarfs. We present optical spectroscopy of 376 of the remaining 413 sources, and identify 44 as ultracool dwarfs with spectroscopic distances less than 20 parsecs. Twenty-five of the 37 sources that lack optical data have near-infrared spectroscopy. Combining the present sample with our previous results and data from the literature, we catalogue 94 L dwarf systems within 20 parsecs. We discuss the distribution of activity, as measured by H-alpha emission, in this volume-limited sample. We have coupled the present ultracool catalogue with data for stars in the northern 8-parsec sample and recent (incomplete) statistics for T dwarfs to provide a snapshot of the current 20-parsec census as a function of spectral type.
We report the discovery of 9 089 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spectra on helium atmosphere white dwarfs, 71 DQs, 42 hot DO/PG1159s, 171 white dwarf+main sequence star binaries, 206 magnetic DAHs, 327 continuum dominated DCs, 397 metal polluted white dwarfs, 450 helium dominated white dwarfs, 647 subdwarfs and 6888 new hydrogen dominated white dwarf stars.
We have analyzed the rotational properties of 12 clumps using $^{13}$CO (1--0) and C$^{18}$O (1--0) maps of the Five College Radio Astronomy Observatory 13.7 m radio telescope. The clumps, located within molecular clouds, have radii ($R$) in the range of 0.06 -- 0.27,pc. The direction of clump elongation is not correlated with the direction of the velocity gradient. We measured the specific angular momentum (J/M) to be between 0.0022 and 0.025 pc,km,s$^{-1}$ based on $^{13}$CO images, and between 0.0025 and 0.021 pc,km,s$^{-1}$ based on C$^{18}$O images. The consistency of $J/M$ based on different tracers indicates the $^{13}$CO and C$^{18}$O in dense clumps trace essentially the same material despite significantly different opacities. We also found that $J/M$ increases monotonically as a function of $R$ in power--law form, $J/M~propto~R^{1.58~pm~0.11}$. The ratio between rotation energy and gravitational energy, $beta$, ranges from 0.0012 to 0.018. The small values of $beta$ imply that rotation alone is not sufficient to support the clump against gravitational collapse.