Do you want to publish a course? Click here

The Anti-Coincidence Detector for the GLAST Large Area Telescope

58   0   0.0 ( 0 )
 Added by Alexander Moiseev
 Publication date 2007
  fields Physics
and research's language is English
 Authors A. A. Moiseev




Ask ChatGPT about the research

This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of ~8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.



rate research

Read More

This paper presents the simulation of the GLAST high energy gamma-ray telescope. The simulation package, written in C++, is based on the Geant4 toolkit, and it is integrated into a general framework used to process events. A detailed simulation of the electronic signals inside Silicon detectors has been provided and it is used for the particle tracking, which is handled by a dedicated software. A unique repository for the geometrical description of the detector has been realized using the XML language and a C++ library to access this information has been designed and implemented.
224 - Jan Conrad 2007
The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, scheduled for launch by NASA in 2007, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the approximate energy range from 20 MeV to more than 300 GeV. Annihilation of Weakly Interacting Massive Particles (WIMP), predicted in many extensions of the Standard Model of Particle Physics, may give rise to a signal in gamma-ray spectra from many cosmic sources. In this contribution we give an overview of the searches for WIMP Dark Matter performed by the GLAST-LAT collaboration.
The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from neutron background in the energy range of interest in ZEPLIN-III. This will reduce the background in ZEPLIN-III from ~0.4 to ~0.14 events per year in the WIMP acceptance region, a significant factor in the event of a non-zero observation. Furthermore, in addition to providing valuable diagnostic capabilities, the veto is capable of tagging over 15% for gamma-ray rejection, all whilst contributing no significant additional background. In conjunction with the replacement of the internal ZEPLIN-III photomultiplier array, the new veto is expected to improve significantly the sensitivity of the ZEPLIN-III instrument to dark matter, allowing spin independent WIMP-nucleon cross sections below 1E-8 pb to be probed.
The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m^2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrument will be discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2-30 keV, achieving about 5 mCrab in the most important 2-10 keV energy band. Moreover, simulations show an anticipated modulation of the background rate as small as 10% over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than the requirement of 1%, and actually meeting the 0.25% science goal.
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/LAD envisages a deployed 3.4 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design, including new elements with respect to the earlier LOFT configuration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا