No Arabic abstract
We present a comparison between the published optical, IR and CO spectroscopic redshifts of 86 (sub-)mm galaxies and their photometric redshifts as derived from long-wavelength radio-mm-FIR photometric data. The redshift accuracy measured for 13 sub-mm galaxies with at least one robustly determined colour in the radio-mm-FIR regime and additional constraining upper limits is z ~0.3. This accuracy degrades to z~0.65 when only the 1.4GHz/850um spectral index is used, as derived from the analysis of a subsample of 58 galaxies with robustly determined redshifts. Despite the wide range of spectral energy distributions in the local galaxies that are used in an un-biased manner as templates, this analysis demonstrates that photometric redshifts can be effciently derived for sub-mm galaxies with a precision of Delta z < 0.5 using only the rest-frame FIR to radio wavelength data, suficient to guide the tuning of broad-band heterodyne observations (e.g. 100m GBT, 50m LMT, ALMA) or aid their determination in the case of a single line detection by these experiments.
We present the redshift distribution of the SHADES galaxy population based on the rest-frame radio-mm-FIR colours of 120 robustly detected 850um sources in the Lockman Hole East (LH) and Subaru XMM-Newton Deep Field (SXDF). The redshift distribution derived from the full SED information is shown to be narrower than that determined from the radio-submm spectral index, as more photometric bands contribute to a higher redshift accuracy. The redshift distribution of sources derived from at least two photometric bands peaks at z ~ 2.4 and has a near-Gaussian distribution, with 50 per cent (interquartile range) of sources at z=1.8-3.1. We find a statistically-significant difference between the measured redshift distributions in the two fields; the SXDF peaking at a slightly lower redshift (median z ~ 2.2) than the LH (median z ~ 2.7), which we attribute to the noise-properties of the radio observations. We demonstrate however that there could also be field-to-field variations that are consistent with the measured differences in the redshift distributions, and hence, that the incomplete area observed by SHADES with SCUBA, despite being the largest sub-mm survey to date, may still be too small to fully characterize the bright sub-mm galaxy population. Finally we present a brief comparison with the predicted, or assumed, redshift distributions of sub-mm galaxy formation and evolution models, and we derive the contribution of these SHADES sources and the general sub-mm galaxy population to the star formation-rate density at different epochs.
We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 {mu}m by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth {tau} = ({ u}/{ u}0)^{beta} where {beta} = +1.8 and { u}0 = c/100 {mu}m. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |z|/(1+z) = 0.16 (< |z| >= 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |z|/(1 + z) = 0.15 (< |z| >= 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z > 3 when compared to ~ 850 {mu}m selected samples.
More than 150 galaxies have been detected in blank-field millimetre and sub-millimetre surveys. However the redshift distribution of sub-mm galaxies remains uncertain due to the difficulty in identifying their optical-IR counterparts, and subsequently obtaining their spectroscopic emission-line redshifts. In this paper we discuss results from a Monte-Carlo analysis of the accuracy with which one can determine redshifts from photometric measurements at sub-millimetre-FIR wavelengths. The analysis takes into account the dispersion in colours introduced by including galaxies with a distribution of SEDs, and by including photometric and absolute calibration errors associated with real observations. We present examples of the probability distribution of redshifts for individual galaxies detected in the future BLAST and Herschel/SPIRE surveys. We show that the combination of BLAST and 850um observations constrain the photometric redshifts with sufficient accuracy to pursue a program of spectroscopic follow-up with the 100m GBT.
Upon its completion the Herschel ATLAS (H-ATLAS) will be the largest submillimetre survey to date, detecting close to half-a-million sources. It will only be possible to measure spectroscopic redshifts for a small fraction of these sources. However, if the rest-frame spectral energy distribution (SED) of a typical H-ATLAS source is known, this SED and the observed Herschel fluxes can be used to estimate the redshifts of the H-ATLAS sources without spectroscopic redshifts. In this paper, we use a subset of 40 H-ATLAS sources with previously measured redshifts in the range 0.5<z<4.2 to derive a suitable average template for high redshift H-ATLAS sources. We find that a template with two dust components T_c = 23.9 K, T_h = 46.9 K and ratio of mass of cold dust to mass of warm dust of 30.1) provides a good fit to the rest-frame fluxes of the sources in our calibration sample. We use a jackknife technique to estimate the accuracy of the redshifts estimated with this template, finding a root mean square of Delta z/(1+z) = 0.26. For sources for which there is prior information that they lie at z > 1 we estimate that the rms of Delta z/(1+z) = 0.12. We have used this template to estimate the redshift distribution for the sources detected in the H-ATLAS equatorial fields, finding a bimodal distribution with a mean redshift of 1.2, 1.9 and 2.5 for 250, 350 and 500 um selected sources respectively. end{abstract}
We use the combined GALFORM semi-analytical model of galaxy formation and GRASIL spectrophotometric code to investigate the properties of galaxies selected via their sub-mm emission. Our fiducial model has previously been shown to fit the properties of local ULIRGs, as well as the number counts of faint sub-mm galaxies. Here, we test the model in detail by comparing the SEDs and stellar, dynamical, gas and halo masses of sub-mm galaxies against observational data. We precisely mimic the sub-mm and radio selection function of the observations and show that the predicted far-infrared properties of model galaxies with S_850>5mJy and S_1.4>30uJy are in good agreement with observations. Although the dust emission model does not assume a single dust temperature, the far-infrared SEDs are well described by single component modified black-body spectrum with characteristic temperature 32+/-5K. We also find evidence that the observations may have uncovered evolution in the far-infrared--radio relation in ULIRGs out to z~2. We show that the predicted redshift distribution of sub-mm galaxies provides a reasonable fit to the observational data with a median redshift z=2.0, with the radio-selected subset predicted to make up approximately 75% of the population. However, the predicted K-band and mid-infrared (3--8um) flux densities of the sub-mm galaxies (and LBGs) are up to a factor 10x fainter than observed. This discrepancy may indicate that the stellar masses of the sub-mm galaxies in the model are too low: M~10^10Mo, while observations suggest more massive systems, M~10^11Mo. Finally, we discuss the potential modifications to the models which may improve the fit to the observational data. [Abridged]