Do you want to publish a course? Click here

The ACS Virgo Cluster Survey. XII. The Luminosity Function of Globular Clusters in Early Type Galaxies

119   0   0.0 ( 0 )
 Added by Andres Jordan
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the luminosity function of the globular clusters (GCs) belonging to the early-type galaxies observed in the ACS Virgo Cluster Survey. We have obtained estimates for a Gaussian representation of the GC luminosity function (GCLF) for 89 galaxies. We have also fit the GCLFs with an evolved Schechter function, which is meant to reflect the preferential depletion of low-mass GCs, primarily by evaporation due to two-body relaxation, from an initial Schechter mass function similar to that of young massive clusters. We find a significant trend of the GCLF dispersion with galaxy luminosity, in the sense that smaller galaxies have narrower GCLFs. We show that this narrowing of the GCLF in a Gaussian description is driven by a steepening of the GC mass function above the turnover mass, as one moves to smaller host galaxies. We argue that this behavior at the high-mass end of the GC mass function is most likely a consequence of systematic variations of the initial cluster mass function. The GCLF turnover mass M_TO is roughly constant, at ~ 2.2 x 10^5 M_sun in bright galaxies, but it decreases slightly in dwarfs with M_B >~ -18. We show that part of the variation could arise from the shorter dynamical friction timescales in smaller galaxies. We probe the variation of the GCLF to projected galactocentric radii of 20-35 kpc in the Virgo giants M49 and M87, finding that M_TO is essentially constant over these spatial scales. Our fits of evolved Schechter functions imply average dynamical mass losses (Delta) over a Hubble time that fall in the range 2 x 10^5 <~ (Delta/M_sun) < 10^6 per GC. We agree with previous suggestions that if the full GCLF is to be understood in more detail GCLF models will have to include self-consistent treatments of dynamical evolution inside time-dependent galaxy potentials. (Abridged)



rate research

Read More

Diffuse star clusters (DSCs) are old and dynamically hot stellar systems that have lower surface brightness and more extended morphology than globular clusters (GCs). Using the images from HST/ACS Fornax Cluster Survey, we find that 12 out of 43 early-type galaxies (ETGs) in the Fornax cluster host significant numbers of DSCs. Together with literature data from the HST/ACS Virgo Cluster Survey, where 18 out of 100 ETGs were found to host DSCs, we systematically study the relationship of DSCs with GCs, and their host galaxy environment. Two DSC hosts are post-merger galaxies, with most of the other hosts either having low mass or showing clear disk components. We find that while the number ratio of DSCs to GCs is nearly constant in massive galaxies, the DSC-to-GC ratio becomes systematically higher in lower mass hosts. This suggests that DSCs may be more efficient at forming (or surviving) in low density environments. DSC hosts are not special either in their position in the cluster, or in the galactic color-magnitude diagram. Why some disk and low-mass galaxies host DSCs while others do not is still a puzzle, however. The mean ages of DSC hosts and non-hosts are similar at similar masses, implying that formation efficiency, rather than survival, is the reason behind different DSC number fractions in early-type galaxies.
We present the color distributions of globular cluster (GC) systems for 100 Virgo cluster early-type galaxies observed in the ACS Virgo Cluster Survey. The color distributions of individual GC systems are consistent with continuous trends across galaxy luminosity, color, and stellar mass. On average, almost all galaxies possess a component of metal-poor GCs, with the average fraction of metal-rich GCs ranging from 15 to 60%. The colors of both subpopulations correlate with host galaxy luminosity and color, with the red GCs having a steeper slope. To convert color to metallicity, we also introduce a preliminary (g-z)-[Fe/H] relation calibrated to Galactic, M49 and M87 GCs. This relation is nonlinear with a steeper slope for [Fe/H] < -0.8. As a result, the metallicities of the metal-poor and metal-rich GCs vary similarly with respect to galaxy luminosity and stellar mass, with relations of [Fe/H]_MP ~ L^0.16 ~ M_star^0.17 and [Fe/H]_MR ~ L^0.26 ~ M_star^0.22, respectively. Although these relations are shallower than the mass-metallicity relation predicted by wind models and observed for dwarf galaxies, they are very similar to the mass-metallicity relation for star forming galaxies in the same mass range. The offset between the two GC populations varies slowly (~ M_star^0.05) and is approximately 1 dex across three orders of magnitude in mass, suggesting a nearly universal amount of enrichment between the formation of the two populations of GCs. We also find that although the metal-rich GCs show a larger dispersion in color, it is the *metal-poor GCs* that have an equal or larger dispersion in metallicity. Like the color-magnitude relation, these relations derived from globular clusters present stringent constraints on the formation and evolution of early-type galaxies. (Abridged)
We use HST/ACS imaging of 100 early-type galaxies in the ACS Virgo Cluster Survey to investigate the nature of diffuse star clusters (DSCs). Compared to globular clusters (GCs), these star clusters have moderately low luminosities (M_V > -8) and a broad distribution of sizes (3 < r_h < 30 pc), but they are principally characterized by their low mean surface brightnesses which can be more than three magnitudes fainter than a typical GC (mu_g > 20 mag arcsec^-2). The median colors of diffuse star cluster systems are red, 1.1 < g-z < 1.6, which is redder than metal-rich GCs and often as red as the galaxy itself. Most DSC systems thus have mean ages older than 5 Gyr or else have super-solar metallicities. We find that 12 galaxies in our sample contain a significant excess of diffuse star cluster candidates -- nine are lenticulars (S0s), and five visibly contain dust. We also find a substantial population of DSCs in the halo of the giant elliptical M49, associated with the companion galaxy VCC 1199. Most DSC systems appear to be both aligned with the galaxy light and associated with galactic disks, but at the same time many lenticulars do not host substantial DSC populations. Diffuse star clusters in our sample share similar characteristics to those identified in other nearby lenticular, spiral, and dwarf galaxies, and we suggest that DSCs preferentially form, survive, and coevolve with galactic disks. Their properties are broadly consistent with those of merged star cluster complexes, and we note that despite being 3 - 5 magnitudes brighter than DSCs, ultra-compact dwarfs have similar surface brightnesses. The closest Galactic analogs to the DSCs are the old open clusters. We suggest that if a diffuse star cluster population did exist in the disk of the Milky Way, it would be very difficult to find. (Abridged)
340 - Patrick Cote 2006
(Abridged) The ACS Virgo Cluster Survey is an HST program to obtain high-resolution, g and z-band images for 100 early-type members of the Virgo Cluster, spanning a range of ~460 in blue luminosity. Based on this large, homogeneous dataset, we present a sharp upward revision in the frequency of nucleation in early-type galaxies brighter than M_B ~ -15 (66 < f_n < 82%), and find no evidence for nucleated dwarfs to be more concentrated to the center of Virgo than their non-nucleated counterparts. Resolved stellar nuclei are not present in galaxies brighter than M_B ~ -20.5, however, there is no clear evidence from the properties of the nuclei, or from the overall incidence of nucleation, for a change at M_B ~ -17.6, the traditional dividing point between dwarf and giant galaxies. On average, nuclei are ~3.5 mag brighter than a typical globular cluster and have a median half-light radius ~4.2 pc. Nuclear luminosities correlate with nuclear sizes and, in galaxies fainter than M_B ~ -17.6, nuclear colors. Comparing the nuclei to the nuclear clusters found in late-type spiral galaxies reveals a close match in terms of size, luminosity and overall frequency, pointing to a formation mechanism that is rather insensitive to the detailed properties of the host galaxy. The mean nuclear-to-galaxy luminosity ratio is indistinguishable from the mean SBH-to-bulge mass ratio, calculated in early-type galaxies with detected supermassive black holes (SBHs). We argue that compact stellar nuclei might be the low-mass counterparts of the SBHs detected in the bright galaxies, and that one should think in terms of Central Massive Objects -- either SBHs or compact stellar nuclei -- that accompany the formation of almost all early-type galaxies and contain a mean fraction ~0.3% of the total bulge mass.
We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation (epsilon > 0.2) and intermediate to high luminosities (M_z<-19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and where the present day major axis is an indicator of the preferred merging axis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا