No Arabic abstract
We present results from a weak lensing analysis of the galaxy cluster A1689 (z=0.183) based on deep wide-field imaging data taken with Suprime-Cam on Subaru telescope. A maximum entropy method has been used to reconstruct directly the projected mass distribution of A1689 from combined lensing distortion and magnification measurements of red background galaxies.The resulting mass distribution is clearly concentrated around the cD galaxy, and mass and light in the cluster are similarly distributed in terms of shape and orientation. The azimuthally-averaged mass profile from the two-dimensional reconstruction is in good agreement with the earlier results from the Subaru one-dimensional analysis of the weak lensing data, supporting the assumption of quasi-circular symmetry in the projected mass distribution of the cluster.
We present a weak-lensing analysis of the merging {em Frontier Fields} (FF) cluster Abell~2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneously modeling the two-dimensional reduced shear field using a combination of a Navarro--Frenk--White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as $M_mathrm{200c} = (2.06pm0.42)times10^{15},M_odot$. The most massive clump is the southern component with $M_mathrm{200c} = (7.7pm3.4)times10^{14},M_odot$, followed by the western substructure ($M_mathrm{200c} = (4.5pm2.0)times10^{14},M_odot$) and two smaller substructures to the northeast ($M_mathrm{200c} = (2.8pm1.6)times10^{14},M_odot$) and northwest ($M_mathrm{200c} = (1.9pm1.2)times10^{14},M_odot$). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a slingshot effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ($87^{+34}_{-28}$ arcsec, 90% CL) and the galaxies ($72^{+34}_{-53}$ arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential.
We present the results of an ongoing weak lensing survey conducted with the Subaru telescope whose initial goal is to locate and study the distribution of shear-selected structures or halos. Using a Suprime-cam imaging survey spanning 21.82 square degree, we present a catalog of 100 candidate halos located from lensing convergence maps. Our sample is reliably drawn from that subset of our survey area, (totaling 16.72 square degree) uncontaminated by bright stars and edge effects and limited at a convergence signal to noise ratio of 3.69. To validate the sample detailed spectroscopic measures have been made for 26 candidates using the Subaru multi-object spectrograph, FOCAS. All are confirmed as clusters of galaxies but two arise as the superposition of multiple clusters viewed along the line of sight. Including data available in the literature and an ongoing Keck spectroscopic campaign, a total of 41 halos now have reliable redshifts. For one of our survey fields, the XMM LSS (Pierre et al. 2004) field, we compare our lensing-selected halo catalog with its X-ray equivalent. Of 15 halos detected in the XMM-LSS field, 10 match with published X-ray selected clusters and a further 2 are newly-detected and spectroscopically confirmed in this work. Although three halos have not yet been confirmed, the high success rate within the XMM-LSS field (12/15) confirms that weak lensing provides a reliable method for constructing cluster catalogs, irrespective of the nature of the constituent galaxies or the intracluster medium.
In Schneider, King & Erben (2000) we developed likelihood techniques to compare the constraints on cluster mass profiles that can be obtained using the shear and magnification information. This work considered circularly symmetric power-law models for clusters at fairly low redshifts where the redshift distribution of source galaxies could be neglected. Here this treatment is extended to encompass NFW profiles which are a good description of clusters from cosmological N-body simulations, and NFW clusters at higher redshifts where the influence of various scenarios for the knowledge of the redshift distribution are examined. Since in reality the overwhelming majority of clusters have ellipsoidal rather than spherical profiles, the singular isothermal ellipsoid (SIE) is investigated. We also briefly consider the impact of substructure on such a likelihood analysis. In general, we find that the shear information provides a better constraint on the NFW profile under consideration, so this becomes the focus of what follows. The ability to differentiate between the NFW and power-law profiles strongly depends on the size of the data field, and on the number density of galaxies for which an ellipticity can be measured. For higher redshift NFW profiles, there is very little reduction (~1.5%) in the dispersion of parameter estimates when spectroscopic redshifts, as opposed to photometric redshift estimates, are available for the galaxies used in the lensing analysis.
We present a 4 deg^2 weak gravitational lensing survey of subhalos in the very nearby Coma cluster using the Subaru/Suprime-Cam. The large apparent size of cluster subhalos allows us to measure the mass of 32 subhalos detected in a model-independent manner, down to the order of 10^-3 of the virial mass of the cluster. Weak-lensing mass measurements of these shear-selected subhalos enable us to investigate subhalo properties and the correlation between subhalo masses and galaxy luminosities for the first time. The mean distortion profiles stacked over subhalos show a sharply truncated feature which is well-fitted by a Navarro-Frenk-White (NFW) mass model with the truncation radius, as expected due to tidal destruction by the main cluster. We also found that subhalo masses, truncation radii, and mass-to-light ratios decrease toward the cluster center. The subhalo mass function, dn/dln M_sub, in the range of 2 orders of magnitude in mass, is well described by a single power law or a Schechter function. Best-fit power indices of 1.09_-0.32^+0.42 for the former model and 0.99_-0.23^+0.34 for the latter, are in remarkable agreement with slopes of ~0.9-1.0 predicted by the cold dark matter paradigm. The tangential distortion signals in the radial range of 0.02-2Mpc/h from the cluster center show a complex structure which is well described by a composition of three mass components of subhalos, the NFW mass distribution as a smooth component of the main cluster, and a lensing model from a large scale structure behind the cluster. Although the lensing signals are 1 order of magnitude lower than those for clusters at z~0.2, the total signal-to-noise ratio, S/N=13.3, is comparable to, or higher, because the enormous number of background source galaxies compensates for the low lensing efficiency of the low lensing efficiency of the nearby cluster.
Using $sim$140 deg$^2$ Subaru Hyper Suprime-Cam (HSC) survey data, we stack the weak lensing (WL) signal around five Planck clusters found within the footprint. This yields a 15$sigma$ detection of the mean Planck cluster mass density profile. The five Planck clusters span a relatively wide mass range, $M_{rm WL,500c} = (2-30)times10^{14},M_odot/h$ with a mean mass of $M_{rm WL,500c} = (4.15pm0.61)times10^{14},M_odot/h$. The ratio of the stacked Planck Sunyaev-Zeldovich (SZ) mass to the stacked WL mass is $ langle M_{rm SZ}rangle/langle M_{rm WL}rangle = 1-b = 0.80pm0.14$. This mass bias is consistent with previous WL mass calibrations of Planck clusters within the errors. We discuss the implications of our findings for the calibration of SZ cluster counts and the much discussed tension between Planck SZ cluster counts and Planck $Lambda$CDM cosmology.