Do you want to publish a course? Click here

Phase mixing in MOND

44   0   0.0 ( 0 )
 Added by Carlo Nipoti
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dissipationless collapses in Modified Newtonian Dynamics (MOND) have been studied by using our MOND particle-mesh N-body code, finding that the projected density profiles of the final virialized systems are well described by Sersic profiles with index m<4 (down to m~2 for a deep-MOND collapse). The simulations provided also strong evidence that phase mixing is much less effective in MOND than in Newtonian gravity. Here we describe ad hoc numerical simulations with the force angular components frozen to zero, thus producing radial collapses. Our previous findings are confirmed, indicating that possible differences in radial orbit instability under Newtonian and MOND gravity are not relevant in the present context.



rate research

Read More

We present the results of N-body simulations of dissipationless galaxy merging in Modified Newtonian Dynamics (MOND). For comparison, we also studied Newtonian merging between galaxies embedded in dark matter halos, with internal dynamics equivalent to the MOND systems. We found that the merging timescales are significantly longer in MOND than in Newtonian gravity with dark matter, suggesting that observational evidence of rapid merging could be difficult to explain in MOND. However, when two galaxies eventually merge, the MOND merging end-product is hardly distinguishable from the final stellar distribution of an equivalent Newtonian merger with dark matter.
Dissipationless collapses in Modified Newtonian Dynamics (MOND) are studied by using a new particle-mesh N-body code based on our numerical MOND potential solver. We found that low surface-density end-products have shallower inner density profile, flatter radial velocity-dispersion profile, and more radially anisotropic orbital distribution than high surface-density end-products. The projected density profiles of the final virialized systems are well described by Sersic profiles with index m~4, down to m~2 for a deep-MOND collapse. Consistently with observations of elliptical galaxies, the MOND end-products, if interpreted in the context of Newtonian gravity, would appear to have little or no dark matter within the effective radius. However, we found impossible (under the assumption of constant mass-to-light ratio) to simultaneously place the resulting systems on the observed Kormendy, Faber-Jackson and Fundamental Plane relations of elliptical galaxies. Finally, the simulations provide strong evidence that phase mixing is less effective in MOND than in Newtonian gravity.
We present the analysis of 12 high-resolution galactic rotation curves from The HI Nearby Galaxy Survey (THINGS) in the context of modified Newtonian dynamics (MOND). These rotation curves were selected to be the most reliable for mass modelling, and they are the highest quality rotation curves currently available for a sample of galaxies spanning a wide range of luminosities. We fit the rotation curves with the simple and standard interpolating functions of MOND, and we find that the simple function yields better results. We also redetermine the value of a0, and find a median value very close to the one determined in previous studies, a0 = (1.22 +- 0.33) x 10^{-8} cm/s^2. Leaving the distance as a free parameter within the uncertainty of its best independently determined value leads to excellent quality fits for 75% of the sample. Among the three exceptions, two are also known to give relatively poor fits also in Newtonian dynamics plus dark matter. The remaining case (NGC 3198), presents some tension between the observations and the MOND fit, which might however be explained by the presence of non-circular motions, by a small distance, or by a value of a0 at the lower end of our best-fit interval, 0.9 x 10^{-8} cm/s^2. The best-fit stellar M/L ratios are generally in remarkable agreement with the predictions of stellar population synthesis models. We also show that the narrow range of gravitational accelerations found to be generated by dark matter in galaxies is consistent with the narrow range of additional gravity predicted by MOND.
The Lambda-CDM cosmological model is succesful at reproducing various independent sets of observations concerning the large-scale Universe. This model is however currently, and actually in principle, unable to predict the gravitational field of a galaxy from it observed baryons alone. Indeed the gravitational field should depend on the relative contribution of the particle dark matter distribution to the baryonic one, itself depending on the individual assembly history and environment of the galaxy, including a lot of complex feedback mechanisms. However, for the last thirty years, Milgroms formula, at the heart of the MOND paradigm, has been consistently succesful at predicting rotation curves from baryons alone, and has been resilient to all sorts of observational tests on galaxy scales. We show that the few individual galaxy rotation curves that have been claimed to be highly problematic for the predictions of Milgroms formula, such as Holmberg II or NGC 3109, are actually false alarms. We argue that the fact that it is actually possible to predict the gravitational field of galaxies from baryons alone presents a challenge to the current Lambda-CDM model, and may indicate a breakdown of our understanding of gravitation and dynamics, and/or that the actual lagrangian of the dark sector is very different and richer than currently assumed. On the other hand, it is obvious that any alternative must also, in fine, reproduce the successes of the Lambda-CDM model on large scales, where this model is so well-tested that it presents by itself a challenge to any such alternative.
This paper summarises a numerical investigation of phase mixing in time-independent Hamiltonian systems that admit a coexistence of regular and chaotic phase space regions, allowing also for low amplitude perturbations idealised as periodic driving, friction, and/or white and colored noise. The evolution of initially localised ensembles of orbits was probed through lower order moments and coarse-grained distribution functions. In the absence of time-dependent perturbations, regular ensembles disperse initially as a power law in time and only exhibit a coarse-grained approach towards an invariant equilibrium over comparatively long times. Chaotic ensembles generally diverge exponentially fast on a time scale related to a typical finite time Lyapunov exponent, but can exhibit complex behaviour if they are impacted by the effects of cantori or the Arnold web. Viewed over somewhat longer times, chaotic ensembles typical converge exponentially towards an invariant or near-invariant equilibrium. This, however, need not correspond to a true equilibrium, which may only be approached over very long time scales. Time-dependent perturbations can dramatically increase the efficiency of phase mixing, both by accelerating the approach towards a near-equilibrium and by facilitating diffusion through cantori or along the Arnold web so as to accelerate the approach towards a true equilibrium. The efficacy of such perturbations typically scales logarithmically in amplitude, but is comparatively insensitive to most other details, a conclusion which reinforces the interpretation that the perturbations act via a resonant coupling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا