Do you want to publish a course? Click here

Fourier-Resolved Spectroscopy of AGN using XMM-Newton data: I. The 3-10 keV band results

128   0   0.0 ( 0 )
 Added by Zach Ioannou
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results from the Fourier Resolved Spectroscopy of archival XMM-Newton data of five AGN, namely, Mrk 766, NGC 3516, NGC 3783, NGC 4051 and Ark 564. This work supplements the earlier study of MCG-6-30-15 as well as those of several Galactic Black Hole Candidate sources. Our results exhibit much larger diversity than those of Galactic sources, a fact we attribute to the diversity of their masses. When we take into account this effect and combine our results with those from Cyg X-1, it seems reasonable to conclude that, at high frequencies, the slope of the Fourier-resolved spectra in accreting black hole systems decreases with increasing frequency as proportional to f^{-0.25}, irrespective of whether the system is in its High or Low state. This result implies that the flux variations in AGN are accompanied by complex spectral slope variations as well. We also find that the Fe Ka line in Mrk 766, NGC 3783 and NGC 4051 is variable on time scales ~day - 1 hour. The iron fluorescence line is absent in the spectra of the highest frequencies,and there is an indication that, just like in Cyg X-1, the equivalent width of the line in the Fourier-resolved of AGN decreases with increasing frequency.



rate research

Read More

The XMM-Newton Slew Survey (XSS) covers a significant fraction of the sky in a broad X-ray bandpass. Although shallow by contemporary standards, in the `classical 2-10 keV band of X-ray astronomy, the XSS provides significantly better sensitivity than any currently available all-sky survey. We investigate the source content of the XSS, focussing on detections in the 2-10 keV band down to a very low threshold (> 4 counts net of background). At the faint end, the survey reaches a flux sensitivity of roughly 3e-12 erg/cm2/s (2-10 keV). Our starting point was a sample of 487 sources detected in the XMMSL1d2 XSS at high galactic latitude in the hard band. Through cross-correlation with published source catalogues from surveys spanning the electromagnetic spectrum from radio to gamma-rays, we find that 45% of the sources have likely identifications with normal/active galaxies, 18% are associated with other classes of X-ray object (nearby coronally active stars, accreting binaries, clusters of galaxies), leaving 37% of the XSS sources with no current identification. We go on to define an XSS extragalactic hard band sample comprised of 219 galaxies and active galaxies. We investigate the properties of this extragalactic sample including its X-ray logN-logS distribution. We find that in the low-count limit, the XSS is strongly affected by Eddington bias. There is also a very strong bias in the XSS against the detection of extended sources, most notably clusters of galaxies. A significant fraction of the detections at and around the low-count limit may be spurious. Nevertheless, it is possible to use the XSS to extract a reasonably robust sample of extragalactic sources, excluding galaxy clusters. The differential logN-logS relation of these extragalactic sources matches very well to the HEAO-1 A2 all-sky survey measurements at bright fluxes and to the 2XMM source counts at the faint end.
We study the Frequency Resolved Spectra of the Seyfert galaxy MCG -6-30-15 obtained during two recent XMM-Newton observations. Splitting the Fourier spectra in soft (<2 keV) and hard (>2 keV) bands, we find that the soft band has a variability amplitude larger than the hard one on time scales longer than 10 ksec, while the opposite is true on time scales shorter than 3 ksec. Both the soft and hard band spectra are well fitted by power laws of different indices. The spectra of the hard band become clearly softer as the Fourier Frequency decreases from 7x10^{-4} Hz to 10^{-5} Hz, while the spectral slope of the soft band power law component is independent of the Fourier frequency. The well known broad Fe Ka feature is absent at all frequency bins; this result implies that this feature is not variable on time scales shorter than ~10^5 sec, in agreement with recent line variability studies. Strong spectral features are also present in the soft X-ray band (at E~0.7), clearly discernible in all Fourier Frequency bins. This fact is consistent with the assumption that they are due to absorption by intervening matter within the source.
57 - Jiang-Tao Li 2015
Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($alpha$) and cutoff frequency ($ u_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended source. We construct equivalent width (EW) maps based on continuum interpolation with the spectral model of each regions. We then compare the EW maps of OVII, OVIII, OVII K$delta-zeta$, Ne, Mg, SiXIII, SiXIV, and S lines constructed with this method to those constructed with linear interpolation. We further extract spectra from larger regions to confirm the features revealed by parameter and EW maps, which are often not directly detectable on X-ray intensity images. For example, O abundance is consistent with solar across the SNR, except for a low-abundance hole in the center. This O Hole has enhanced OVII K$delta-zeta$ and Fe emissions, indicating recently reverse shocked ejecta, but also has the highest $n_et$, indicating forward shocked ISM. Therefore, a multi-temperature model is needed to decompose these components. The asymmetric metal distributions suggest there is either an asymmetric explosion of the SN or an asymmetric distribution of the ISM.
The XMM-LSS, XMM-COSMOS, and XMM-CDFS surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and PSF. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of AGN and its evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 10^42-10^46 erg/s, and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power-law with LADE or LDDE evolution, are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the 15-parameter extended LDDE model recently proposed by Ueda et al., and find that this extension is not supported by our data. The strength of our method is that it provides: un-absorbed non-parametric estimates; credible intervals for luminosity function parameters; model choice according to which one has more predictive power for future data.
58 - M. J. Freyberg 2005
The scientific data collected during slews of the XMM-Newton satellite are used to construct a slew survey catalogue. This comprises of the order of 4000 sources detected in the EPIC-pn 0.2-12 keV band with exposures of less than 15s and a sky coverage of about 6300 square degrees (source density ~0.65 per square degree). Below 2 keV the sensitivity limit is comparable to the ROSAT PSPC All-Sky Survey and the XMM-Newton slew survey offers long-term variablity studies. Above 2 keV the survey will be a factor of 10 more sensitive than all previous all-sky X-ray surveys. The slew survey is almost complementary to the serendipitous survey compiled from pointed XMM-Newton observations. It is aimed to release the first source catalogue by the end of 2005. Later slew observations and detections will continuously be added. This paper discusses the XMM-Newton slew survey also in a historical context.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا