Eta Carinae across the 2003.5 minimum: Spectroscopic Evidence for Massive Binary Interactions


Abstract in English

We have analyzed high spatial, moderate spectral resolution observations of Eta Carinae obtained with the STIS from 1998.0 to 2004.3. The spectra show prominent P-Cygni lines in H I, Fe II and He I which are complicated by blends and contamination by nebular emission and absorption along the line-of-sight toward the observer. All lines show phase and species dependent variations in emission and absorption. For most of the cycle the He I emission is blueshifted relative to the H I and Fe II P-Cygni emission lines, which are approximately centered at system velocity. The blueshifted He I absorption varies in intensity and velocity throughout the 2024 day period. We construct radial velocity curves for the absorption component of the He I and H I lines. The He I absorption shows significant radial velocity variations throughout the cycle, with a rapid change of over 200 km/s near the 2003.5 event. The H I velocity curve is similar to that of the He I absorption, though offset in phase and reduced in amplitude. We interpret the complex line profile variations in He I, H I and Fe II to be a consequence of the dynamic interaction of the dense wind of Eta Car A with the less dense, faster wind plus the radiation field of a hot companion star, Eta Car B. During most of the orbit, Eta Car B and the He+ recombination zone are on the near side of Eta Car A, producing blueshifted He I emission. He I absorption is formed in the part of the He+ zone that intersects the line-of-sight toward Eta Car. We use the variations seen in He I and the other P-Cygni lines to constrain the geometry of the orbit and the character of Eta Car B.

Download