Do you want to publish a course? Click here

The characteristic polarized radio continuum distribution of cluster spiral galaxies

364   0   0.0 ( 0 )
 Added by Bernd Vollmer
 Publication date 2007
  fields Physics
and research's language is English
 Authors B. Vollmer




Ask ChatGPT about the research

Deep observations of 6cm polarized radio continuum emission of 8 Virgo spiral galaxies are presented. All galaxies show strongly asymmetric distributions of polarized intensity with elongated ridges located in the outer galactic disk. Such features are not found in existing observations of polarized radio continuum emission of field spiral galaxies, where the distribution of 6cm polarized intensity is generally relatively symmetric and strongest in the interarm regions. We therefore conclude that most Virgo spiral galaxies and most probably the majority of cluster spiral galaxies show asymmetric distributions of polarized radio continuum emission due to their interaction with the cluster environment. The polarized continuum emission is sensitive to compression and shear motions in the plane of the sky and thus contains important information about velocity distortions caused by these interactions.



rate research

Read More

We use high resolution IRAS and 20 cm radio continuum (RC) images of a sample of 22 spiral galaxies to study the correlation between the far infra-red (FIR) and RC emissions within the galactic disks. A combination of exponential and gaussian profiles rather than a single exponential profile is found to be a better representation of the observed intensity profiles in the two bands. The gaussian component, which we show is not due to the effects of limited beam-resolution, contains more than 60% of the total flux in majority of the galaxies. The dominance of the gaussian component suggests that the nuclear star forming regions and the bulge stars are more important contributors to the emission in the two bands, rather than the outer exponential stellar disks. The RC profile is flatter compared to the FIR profile, resulting in a decrease of their ratio, Q60, away from the center. However, the Q60 increases in the extreme outer parts, where the dispersion in the FIR and RC correlation is also higher than in the central regions. The global Q60 and its dispersion match those in the inner parts of the galaxies. These results imply that the observed tight correlation in the global quantities reflects processes in the inner regions only where OB stars and the associated Type II supernovae control the FIR and RC emission. In the outer parts heating of very small dust grains by the old disk stars provides a secondary component in the FIR emission, without associated RC emission. The edge-on galaxy NGC3079 shows extended FIR and RC emissions along its minor axis, probably associated with the nuclear starburst activity.
358 - B. Vollmer 2004
New radio continuum observations of galaxies in the Virgo cluster region at 4.85, 8.6, and 10.55 GHz are presented. These observations are combined with existing measurements at 1.4 and 0.325 GHz. The sample includes 81 galaxies were spectra with more than two frequencies could be derived. Galaxies that show a radio-FIR excess exhibit central activity (HII, LINER, AGN). The four Virgo galaxies with the highest absolute radio excess are found within 2 degrees of the center of the cluster. Galaxies showing flat radio spectra also host active centers. There is no clear trend between the spectral index and the galaxys distance to the cluster center.
256 - Scott D. Hyman 2001
We analyze 3.5 resolution, high sensitivity radio continuum images of the nearby spiral galaxy NGC 4258 at 6 and 20 cm derived from multiple observations used to monitor the radio supernova SN 1981K (Van Dyk et al. 1992, [ApJ, 396, 1995]). Seven bright H II region and five supernova remnant candidates are identified. Extinctions to the H II regions are estimated for the first time from a comparison of radio flux densities to new optical fluxes derived from H-alpha observations by Dutil & Roy (1999, [ApJ, 516, 62]). The bright end of the H II region luminosity function is established at each wavelength. The luminosity functions are best fit by power laws consistent with the shape of previously published radio and optical luminosity functions for a number of galaxies. The supernova remnants are all about 2--3 times the radio luminosity of Cas A. In addition, the galaxys nucleus is shown to have been variable over the SN 1981K monitoring period. The spectral index (alpha) distribution of the anomalous radio arms is investigated and found to be relatively uniform at alpha = -0.65 +/- 0.10.
70 - T J Galvin , N Seymour , J Marvil 2017
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework we find the radio continuum is rarely characterised well by a single power law, instead often exhibiting low frequency turnovers below 500,MHz, steepening at mid-to-high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 to 500,MHz the radio-continuum at low frequency ($ u < 200$,MHz) could be overestimated by upwards of a factor of twelve if a simple power law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be $alpha=-1.06$, which is steeper then the canonical value of $-0.8$ for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
We analyse a high-resolution, fully cosmological, hydrodynamical disc galaxy simulation, to study the source of the double-exponential light profiles seen in many stellar discs, and the effects of stellar radial migration upon the spatio-temporal evolution of both the disc age and metallicity distributions. We find a break in the pure exponential stellar surface brightness profile, and trace its origin to a sharp decrease in the star formation per unit surface area, itself produced by a decrease in the gas volume density due to a warping of the gas disc. Star formation in the disc continues well beyond the break. We find that the break is more pronounced in bluer wavebands. By contrast, we find little or no break in the mass density profile. This is, in part, due to the net radial migration of stars towards the external parts of the disc. Beyond the break radius, we find that ~60% of the resident stars migrated from the inner disc, while ~25% formed in situ. Our simulated galaxy also has a minimum in the age profile at the break radius but, in disagreement with some previous studies, migration is not the main mechanism producing this shape. In our simulation, the disc metallicity gradient flattens with time, consistent with an inside-out formation scenario. We do not find any difference in the intensity or the position of the break with inclination, suggesting that perhaps the differences found in empirical studies are driven by dust extinction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا