Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets


Abstract in English

Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanets Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanets Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars.

Download