No Arabic abstract
We measure the amount of absorption in the Lyman-alpha forest at 0 < z < 1.6 in HST FOS spectra of 74 QSOs. At 0 < z < 1.6 we find that 79% of the absorption is from the low density intergalactic medium, 12% from metals and 9% from the strong H I lines, nearly identical to the percentages (78, 15 and 7) that we measured independently at z=2 from spectra taken with the Kast spectrograph on the Lick 3-m. At z=1 the low density intergalactic medium absorbs 0.037 +/- 0.004 of the flux. The error includes some but not all of the uncertainty in the continuum level. The remaining part gives relative errors of approximately 0.21 when we report the mean absorption in eight independent redshift intervals, and 0.047 when we average over all redshifts. We find 1.46 times more absorption from the low density intergalactic medium than comes from Ly-alpha lines that Bechtold et al. 2002 listed in the same spectra. The amount of absorption increases with z and can be fit by a power law in (1+z) with index 1.01. This corresponds to no change in the number of lines, of fixed rest frame equivalent widths, per unit redshift, consistent with the Janknecht et al. 2006 results on the distribution of lines. When we include similar measurements from higher redshifts, we need more degrees of freedom to fit the amount of absorption at 0 < z < 3.2. A power law with a break in slope, changing from index 1.5 at low z to 3.0 above z ~ 1.1 is a better but only marginally acceptable fit. We also calculate two other continuous statistics, the flux probability distribution function and the flux autocorrelation function that is non zero out to v ~ 500 km/sec at 0.5 < z < 1.5.
We analyzed the absorption line spectra of all quasars observed with the high resolution gratings of the Faint Object Spectrograph on board the Hubble Space Telescope. We examined 788 spectra for 334 quasars, and present line lists and identifications of absorption lines in the spectra of 271 of them. Analysis of the statistics of the Ly-alpha and metal absorption systems are presented in companion papers (Dobrzycki et al. 2001; Scott et al. 2001; Morita et al. 2001). The data and several analysis products are available electronically and on the authors web site.
We use the probability distribution function (PDF) of the lya forest flux at z=2-3, measured from high-resolution UVES/VLT data, and hydrodynamical simulations to obtain constraints on cosmological parameters and the thermal state of the intergalactic medium (IGM) at z 2-3. The observed flux PDF at z=3 alone results in constraints on cosmological parameters in good agreement with those obtained from the WMAP data, albeit with about a factor two larger errors. The observed flux PDF is best fit with simulations with a matter fluctuation amplitude of sigma_8=0.8-0.85 pm 0.07 and an inverted IGM temperature-density relation (gamma ~ 0.5-0.75), consistent with our previous results obtained using a simpler analysis. These results appear to be robust to uncertainties in the quasar (QSO) continuum placement. We further discuss constraints obtained by a combined analysis of the high-resolution flux PDF and the power spectrum measured from the Sloan Digital Sky Survey (SDSS) lya forest data. The joint analysis confirms the suggestion of an inverted temperature-density relation, but prefers somewhat higher values (sigma_8 ~ 0.9) of the matter fluctuation amplitude than the WMAP data and the best fit to the flux PDF alone. The joint analysis of the flux PDF and power spectrum (as well as an analysis of the power spectrum data alone) prefers rather large values for the temperature of the IGM, perhaps suggesting that we have identified a not yet accounted for systematic error in the SDSS flux power spectrum data or that the standard model describing the thermal state of the IGM at z ~ 2-3 is incomplete.
We give a comprehensive statistical description of the Lyman-alpha absorption from the intergalactic medium in a hydrodynamic simulation at redshifts 0.1-1.6, the range of redshifts covered by HST spectra of QSOs. We use the ENZO code to make a 76 comoving Mpc cube simulation using 75 kpc cells, for a Hubble constant of 71 km/s/Mpc. The best prior work, by citet{dave99},used an SPH simulation in a 15.6 Mpc box with an effective resolution of 245 kpc and slightly different cosmological parameters. At redshifts z=2 this simulation is different from data. citet{tytler07b} found that the simulated spectra at z=2 have too little power on large scales, Lyman-alpha lines are too wide, there is a lack high column density lines, and there is a lack of pixels with low flux. Here we present statistics at z<1.6, including the flux distribution, the mean flux, the effective opacity, and the power and correlation of the flux. We also give statistics of the lyman alpha lines including the line width distribution, the column density distribution, the number of lines per unit equivalent width and redshift, and the correlation between the line width and column density. We find that the mean amount of absorption in the simulated spectra changes smoothly with redshift with DA(z)=0.01(1+z)^{2.25}. Both the trend and absolute values are close to measurements of HST spectra by citet{kirkman07a}. The column density and line width distributions are also close to those measured from HST spectra by citet{janknecht06a}, except for the mode of the line width distribution which is smaller in the HST spectra. Although some differences that we saw at z=2 are too subtle to be seen in existing HST spectra, overall, the simulation gives an good description of HST spectra at 0.1<z<1.6.
We present the analysis of a sample of the Ly-$alpha$ forest spectra of 152 quasars taken with the HST FOS. The Ly-$alpha$ lines show little evolution at $0<z<1.7$. We see a difference between the evolution indices for weak and strong lines.
We investigate the thermal history of the intergalactic medium (IGM) in the redshift interval z=1.7--3.2 by studying the small-scale fluctuations in the Lyman alpha forest transmitted flux. We apply a wavelet filtering technique to eighteen high resolution quasar spectra obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES), and compare these data to synthetic spectra drawn from a suite of hydrodynamical simulations in which the IGM thermal state and cosmological parameters are varied. From the wavelet analysis we obtain estimates of the IGM thermal state that are in good agreement with other recent, independent wavelet-based measurements. We also perform a reanalysis of the same data set using the Lyman alpha forest flux probability distribution function (PDF), which has previously been used to measure the IGM temperature-density relation. This provides an important consistency test for measurements of the IGM thermal state, as it enables a direct comparison of the constraints obtained using these two different methodologies. We find the constraints obtained from wavelets and the flux PDF are formally consistent with each other, although in agreement with previous studies, the flux PDF constraints favour an isothermal or inverted IGM temperature-density relation. We also perform a joint analysis by combining our wavelet and flux PDF measurements, constraining the IGM thermal state at z=2.1 to have a temperature at mean density of T0/[10^3 K]=17.3 +/- 1.9 and a power-law temperature-density relation exponent gamma=1.1 +/- 0.1 (1 sigma). Our results are consistent with previous observations that indicate there may be additional sources of heating in the IGM at z<4.