No Arabic abstract
Using the CHARA Array and the Palomar Testbed Interferometer, the chemically peculiar star $lambda$ Bo{o}tis has been spatially resolved. We have measured the limb darkened angular diameter to be $theta_{LD} = 0.533pm0.029$ mas, corresponding to a linear radius of $R_{star} = 1.70 pm 0.10 R_odot$. The measured angular diameter yields an effective temperature for $lambda$ Boo of $T_{eff} = 8887 pm 242$ K. Based upon literature surface gravity estimates spanning $log{(g)} = 4.0-4.2$ $[rm{cm s}^{-rm{2}}]$, we have derived a stellar mass range of $M_{star} = 1.1 - 1.7$ $M_odot$. For a given surface gravity, the linear radius uncertainty contributes approximately $sigma(M_star) = 0.1-0.2 M_odot$ to the total mass uncertainty. The uncertainty in the mass (i.e., the range of derived masses) is primarily a result of the uncertainty in the surface gravity. The upper bound of our derived mass range ($log(g)=4.2, M_star = 1.7pm0.2 M_odot$) is consistent with 100-300 MYr solar-metallicity evolutionary models. The mid-range of our derived masses ($log(g)=4.1, M_star = 1.3pm0.2 M_odot$) is consistent with 2-3 GYr metal-poor evolutionary models. A more definitive surface gravity determination is required to determine a more precise mass for $lambda$ Boo.
Observing planetary auroral radio emission is the most promising method to detect exoplanetary magnetic fields, the knowledge of which will provide valuable insights into the planets interior structure, atmospheric escape, and habitability. We present LOFAR-LBA circularly polarized beamformed observations of the exoplanetary systems 55 Cancri, $upsilon$ Andromedae, and $tau$ Bo{o}tis. We tentatively detect circularly polarized bursty emission from the $tau$ Bo{o}tis system in the range 14-21 MHz with a flux density of $sim$890 mJy and with a significance of $sim$3$sigma$. For this detection, no signal is seen in the OFF-beams, and we do not find any potential causes which might cause false positives. We also tentatively detect slowly variable circularly polarized emission from $tau$ Bo{o}tis in the range 21-30 MHz with a flux density of $sim$400 mJy and with a statistical significance of $>$8$sigma$. The slow emission is structured in the time-frequency plane and shows an excess in the ON-beam with respect to the two simultaneous OFF-beams. Close examination casts some doubts on the reality of the slowly varying signal. We discuss in detail all the arguments for and against an actual detection. Furthermore, a $sim$2$sigma$ marginal signal is found from the $upsilon$ Andromedae system and no signal is detected from the 55 Cancri system. Assuming the detected signals are real, we discuss their potential origin. Their source probably is the $tau$ Bootis planetary system, and a possible explanation is radio emission from the exoplanet $tau$ Bootis b via the cyclotron maser mechanism. Assuming a planetary origin, we derived limits for the planetary polar surface magnetic field strength, finding values compatible with theoretical predictions. Further low-frequency observations are required to confirm this possible first detection of an exoplanetary radio signal. [Abridged]
We find the angular diameter of R Doradus to be 57 +/- 5 mas, exceeding that of Betelgeuse and implying that R Dor is larger in apparent size than every star except the Sun. R Dor is shown to be closely related to the Mira variables. We estimate an effective temperature of 2740 +/- 190 K, a distance of 61 +/- 7 pc, a luminosity of 6500 +/- 1400 Lsol and a radius of 370 +/- 50 Rsol. The characteristics of R Dor are consistent with it being near the edge of a Mira instability strip. We detect non-zero closure phases from R Dor, indicating an asymmetric brightness distribution. We also observed W Hya, a small-amplitude Mira, for which we find an angular diameter of 44 +/- 4 mas.
The bright, well-known K5 giant Aldebaran, alpha Tau, is probably the star with the largest number of direct angular diameter determinations, achieved over a long time by several authors using various techniques. In spite of this wealth of data, or perhaps as a direct result of it, there is not a very good agreement on a single angular diameter value. This is particularly unsettling if one considers that Aldebaran is also used as a primary calibrator for some angular resolution methods, notably for optical and infrared long baseline interferometry. Directly connected to Aldebarans angular diameter and its uncertainties is its effective temperature, which also has been used for several empirical calibrations. Among the proposed explanations for the elusiveness of an accurate determination of the angular diameter of Aldebaran are the possibility of temporal variations as well as a possible dependence of the angular diameter on the wavelength. We present here a few, very accurate new determinations obtained by means of lunar occultations and long baseline interferometry. We derive an average value of 19.96+-0.03 milliarcseconds for the uniform disk diameter. The corresponding limb-darkened value is 20.58+-0.03 milliarcseconds, or 44.2+-0.9 R(sun). We discuss this result, in connection with previous determinations and with possible problems that may affect such measurements.
We present an analysis of a deep, 172 ks Chandra observation of the Large Area Lyman Alpha Survey (LALA) Bo{o}tes field, obtained with the Advanced CCD Imaging Spectrometer (ACIS-I) on the Chandra X-ray Observatory. This is one of the deepest Chandra images of the extragalactic sky; only the 2 Ms CDF-N and 1 Ms CDF-S are substantially deeper. A total of 168 X-ray sources were detected. The X-ray source counts were derived and compared with those from other Chandra deep surveys; the hard X-ray source density of the LALA Bo{o}tes field is 33% higher than that of CDF-S at the flux level of 2.0E-15 ergs/cm^2/s, confirming the field-to-field variances of the hard band source counts reported by previous studies. The deep exposure resolves > 72% of the 2-10 keV X-ray background. Our primary optical data are R-band imaging from NOAO Deep Wide-Field Survey (NDWFS), with limiting magnitude of R = 25.7 (Vega, 3sigma, 4 diameter aperture). We have found optical counterparts for 152 of the 168 Chandra sources (90%). Among the R-band non-detected sources, not more than 11 of them can possibly be at z > 5, based on the hardness ratios of their X-ray emission and nondetections in bluer bands. The majority (~76%) of the X-ray sources are found to have log(f_X/f_R) within 0.0+-1, which are believed to be AGNs.Most of the X-ray faint/optically bright sources (log(f_X/f_R) < -1.0) are optically extended, which are low-z normal galaxies or low luminosity AGNs. There is also a population of sources which are X-ray overluminous for their optical magnitudes (log(f_X/f_R) > 1.0), which are harder in X-ray and are probably obscured AGNs. (abridged)
The local expansion rate of the Universe is parametrized by the Hubble constant, $H_0$, the ratio between recession velocity and distance. Different techniques lead to inconsistent estimates of $H_0$. Observations of Type Ia supernovae (SNe) can be used to measure $H_0$, but this requires an external calibrator to convert relative distances to absolute ones. We use the angular diameter distance to strong gravitational lenses as a suitable calibrator, which is only weakly sensitive to cosmological assumptions. We determine the angular diameter distances to two gravitational lenses, $810^{+160}_{-130}$ and $1230^{+180}_{-150}$~Mpc, at redshifts of $z=0.295$ and $0.6304$. Using these absolute distances to calibrate 740 previously-measured relative distances to SNe, we measure the Hubble constant to be $H_0=82.4^{+8.4}_{-8.3} ~{rm km,s^{-1},Mpc^{-1}}$.