No Arabic abstract
Particle acceleration at non-relativistic shocks can be very efficient, leading to the appearance of non-linear effects due to the dynamical reaction of the accelerated particles on the shock structure and to the non-linear amplification of the magnetic field in the shock vicinity. The value of the maximum momentum $p_{max}$ in these circumstances cannot be estimated using the classical results obtained within the framework of test particle approaches. We provide here the first attempt at estimating $p_{max}$ in the cosmic ray modified regime, taking into account the non-linear effects mentioned above.
The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scattering, resulting in higher energies making the whole acceleration process more efficient.
Stationary solutions to the problem of particle acceleration at shock waves in the non-linear regime, when the dynamical reaction of the accelerated particles on the shock cannot be neglected, are known to show a prominent energy flux escaping from the shock towards upstream infinity. On physical grounds, the escape of particles from the upstream region of a shock has to be expected in all those situations in which the maximum momentum of accelerated particles, $p_{max}$, decreases with time, as is the case for the Sedov-Taylor phase of expansion of a shell Supernova Remnant, when both the shock velocity and the cosmic ray induced magnetization decrease. In this situation, at each time $t$, particles with momenta larger than $p_{max}(t)$ leave the system from upstream, carrying away a large fraction of the energy if the shock is strongly modified by the presence of cosmic rays. This phenomenon is of crucial importance for explaining the cosmic ray spectrum detected at Earth. In this paper we discuss how this escape flux appears in the different approaches to non-linear diffusive shock acceleration, and especially in the quasi-stationary semi-analytical kinetic ones. We apply our calculations to the Sedov-Taylor phase of a typical supernova remnant, including in a self-consistent way particle acceleration, magnetic field amplification and the dynamical reaction on the shock structure of both particles and fields. Within this framework we calculate the temporal evolution of the maximum energy reached by the accelerated particles and of the escape flux towards upstream infinity. The latter quantity is directly related to the cosmic ray spectrum detected at Earth.
The maximum energy to which cosmic rays can be accelerated at weakly-magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropised in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganised field is required on larger scales. The growth of cosmic-ray induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth-rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly-magnetised ultra-relativistic shocks are disfavoured as high energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.
A novel diagnostic of cosmic-ray modified shocks by polarimetry of H $alpha$ emissions is suggested. In a cosmic-ray modified shock, the pressure of cosmic rays is sufficiently high compared to the upstream ram pressure to force the background plasma to decelerate (measured in the shock rest frame). Simultaneously, a fraction of the hydrogen atoms co-existing in the upstream plasma collide with the decelerated protons and undergo charge-exchange reactions. As a result, hydrogen atoms with the same bulk velocity of the decelerated protons are generated. We show that when the shock is observed from edge-on, the H $alpha$ radiated by these upstream hydrogen atoms is linearly polarized with a sizable degree of a few per cent as a result of resonant scattering of Ly $beta$. The polarization direction depends strongly on the velocity modification; the direction is parallel to the shock surface for the case of no modification, while the direction is parallel to the shock velocity for the case of a modified shock.
It is widely believed that the maximum energy of synchrotron photons when electrons are accelerated in shocks via the Fermi process is about 50 MeV (in plasma comoving frame). We show that under certain conditions, which are expected to be realized in relativistic shocks of gamma-ray bursts, synchrotron photons of energy much larger than 50 MeV (comoving frame) can be produced. The requirement is that magnetic field should decay downstream of the shock front on a length scale that is small compared with the distance traveled by the highest energy electrons before they lose half their energy; photons of energy much larger than 50 MeV are produced close to the shock front whereas the highest Lorentz factor that electrons can attain is controlled by the much weaker field that occupies most of the volume of the shocked plasma.