Do you want to publish a course? Click here

Leo II Group: decoupled cores of NGC 3607 and NGC 3608

94   0   0.0 ( 0 )
 Added by Olga Silchenko
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The kinematics, structure, and stellar population properties in the centers of two brightest early-type galaxies of the Leo II group, NGC 3607 and NGC 3608, are studied by means of integral-field spectroscopy. The kinematically distinct areas in the centers of these galaxies, with radii of 6 and 5 respectively, are found also to be chemically distinct. These stellar structures are characterized by enhanced magnesium-line strength in the integrated spectra. However, we have not found any mean stellar age differences between the decoupled cores and their outskirts. Analysis of the two-dimensional line-of-sight velocity fields reveals systematic turns of the kinematical major axes near the nuclei of both galaxies; in NGC 3608 the ionized gas rotates in the orthogonal plane with respect to the stellar component rotation. By taking into account some morphological features, we conclude that both NGC 3607 and NGC 3608 have large triaxial stellar spheroids. We argue that the magnesium-enhanced cores are not circumnuclear disks; instead they resemble rather compact triaxial structures which may be a cause of formation of polar disks around them - a gaseous one in NGC 3608 and a stellar-gaseous one in NGC 3607. In the latter galaxy the star formation is perhaps still proceeding over the polar disk.

rate research

Read More

170 - O. K. Silchenko 2010
We have studied unbarred S0 galaxies, NGC 3599 and NGC 3626, the members of the X-ray bright group Leo II, by means of 3D spectroscopy, long-slit spectroscopy, and imaging, with the aim to identify epoch and mechanismsof their transformation from spirals. Both galaxies have appeared to bear a complex of features resulting obviously from minor merging: decoupled gas kinematics, nuclear starforming rings, and multi-tiered oval large-scale stellar disks. The weak-emission line nucleus of NGC 3599 bears all signs of the Seyfert activity, according to the line-ratio diagnostics of the gas excitation mechanism. After all, we conclude that the transformation of these lenticular galaxies has had place about 1-2 Gyr ago, through the gravitational mechanisms not related to hot intragroup medium of Leo II.
94 - O.K. Silchenko 2003
The central regions of the three brightest members of the Leo I galaxy group -- NGC 3368, NGC 3379, and NGC 3384 -- are investigated by means of 2D spectroscopy. In all three galaxies we have found separate circumnuclear stellar and gaseous subsystems -- more probably, disks -- whose spatial orientations and spins are connected to the spatial orientation of the supergiant intergalactic HI ring reported previously by Schneider et al. (1983) and Schneider (1985, 1989). In NGC 3368 the global gaseous disk seems also to be inclined to the symmetry plane of the stellar body, being probably of external origin. Although the rather young mean stellar age and spatial orientations of the circumnuclear disks in NGC 3379, NGC 3384, and NGC 3368 could imply their recent formation from material of the intergalactic HI cloud, the time scale of these secondary formation events, of order 3 Gyr, does not support the collision scenario of Rood & Williams (1985), but is rather in line with the ideas of Schneider (1985, 1989) regarding tidal interactions of the galaxies with the HI cloud on timescales of the intergroup orbital motions.
106 - Michael Pierce 2005
We have obtained Gemini/GMOS spectra for 22 GCs associated with NGC 3379. We derive ages, metallicities and alpha-element abundance ratios from simple stellar population models using the multi-index chi^2 minimisation method of Proctor & Sansom (2002). All of these GCs are found to be consistent with old ages, i.e. >10 Gyr, with a wide range of metallicities. A trend of decreasing alpha-element abundance ratio with increasing metallicity is indicated. The projected velocity dispersion of the GC system is consistent with being constant with radius. Non-parametric, isotropic models require a significant increase in the mass-to-light ratio at large radii. This result is in contrast to that of Romanowsky et al. (2003) who find a decrease in the velocity dispersion profile as determined from planetary nebulae. Our constant dispersion requires a normal sized dark halo, although without anisotropic models we cannot rigorously determine the dark halo mass. A two-sided chi^2 test over all radii, gives a 2 sigma difference between the mass profile derived from our GCs compared to the PN-derived mass model of Romanowsky et al. (2003). However, if we restrict our analysis to radii beyond one effective radius and test if the GC velocity dispersion is consistently higher, we determine a >3 sigma difference between the mass models, and hence favor the conclusion that NGC 3379 does indeed have dark matter at large radii in its halo. (abridged)
We report on neutral hydrogen (HI) observations of the NGC 7232 group with the Australian Square Kilometre Array Pathfinder (ASKAP). These observations were conducted as part of the Wide-field ASKAP L-Band Legacy All-sky Blind surveY (WALLABY) Early Science program with an array of 12 ASKAP antennas equipped with Phased Array Feeds, which were used to form 36 beams to map a field of view of 30 square degrees. Analyzing a subregion of the central beams, we detect 17 HI sources. Eleven of these detections are identified as galaxies and have stellar counterparts, of which five are newly resolved HI galaxy sources. The other six detections appear to be tidal debris in the form of HI clouds that are associated with the central triplet, NGC 7232/3, comprising the spiral galaxies NGC 7232, NGC7232B and NGC7233. One of these HI clouds has a mass of M_HI ~ 3 x 10^8 M_sol and could be the progenitor of a long-lived tidal dwarf galaxy. The remaining HI clouds are likely transient tidal knots that are possibly part of a diffuse tidal bridge between NGC 7232/3 and another group member, the lenticular galaxy IC 5181.
164 - B. Mookerjea 2009
We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM1. We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22x26 field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 micron SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in a very cold cloud core, which is strongly enhanced in NH2D. We find that HD 37903 is the most massive member of a cluster with 20 -- 30 PMS stars. We also find smaller groups of PMS stars formed from the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. We refine the spectral classification of HD 37903 to B2 Ve. Our study shows that the expansion of the IC 434 HII region has triggered star formation in some of the dense elephant trunk structures and compressed gas inside the L 1630 molecular cloud. This pre-shock region is seen as a sub-millimeter ridge in which stars have already formed. The cluster associated with NGC 2023 is very young, and has a large fraction of Class I sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا