Do you want to publish a course? Click here

First Terrestrial Soft X-ray Auroral Observation by The Chandra X-ray Observatory

69   0   0.0 ( 0 )
 Added by Anil Bhardwaj
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10 keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each ~20 min duration) between mid-December 2003 and mid-April 2004. These observations aimed at searching for Earths soft (<2 keV) X-ray aurora in a comparative study with Jupiters X-ray aurora, where a pulsating X-ray hot-spot has been previously observed by Chandra. The first Chandra soft X-ray observations of Earths aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01-20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.



rate research

Read More

We observed MS 1054-0321, the highest redshift cluster of galaxies in the Einstein Medium Sensitivity Survey (EMSS), with the Chandra ACIS-S detector. We find the X-ray temperature of the cluster to be 10.4 +1.7 -1.5 keV, lower than, but statistically consistent with, the temperature inferred previously. This temperature agrees well with the observed velocity dispersion and that found from weak lensing. We are also able to make the first positive identification of an iron line in this cluster and find a value of 0.26 +/- 0.15 for the abundance relative to solar, consistent with early enrichment of the ICM. We confirm significant substructure in the form of two distinct clumps in the X-ray distribution. The eastern clump seems to coincide with the main cluster component. It has a temperature of 10.5 +3.4 -2.1 keV, approximately the same as the average spectral temperature for the whole cluster. The western clump is cooler, with a temperature of 6.7 +1.7 -1.2 and may be a subgroup falling into the cluster. Though the presence of substructure indicates that this cluster is not fully relaxed, cluster simulations suggest that we will underestimate the mass, and we can, therefore, use the mass to constrain Omega_m. From the overall cluster X-ray temperature we find the virial mass of the cluster to be at least 4.5 x 10^14 h^{-1} M_{odot}. We revisit the cosmological implications of the existence of such a hot, massive cluster at a relatively early epoch. Despite the lower temperature, we still find that the existence of this cluster constrains Omega_m to be less than one. If Omega_m = 1 and assuming Gaussian initial perturbations, we find the probability of observing MS 1054 in the EMSS is ~7 x 10^{-4}.
Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASAs Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
62 - Y. Yang 2001
We present Chandra X-ray observations of the nearby Seyfert 1.5 galaxy NGC 4151. The images show the extended soft X-ray emission on the several hundreds of pc scale with better sensitivity than previously obtained. The spectrum of the unresolved nuclear source may be described by a heavily absorbed (N_{H} simeq 3 times 10^{22} cm^-2), hard power-law (Gamma simeq 0.3) plus soft emission from either a power-law (Gamma simeq 2.6) or a thermal (kT simeq 0.6 keV) component. The flux of the high energy component has decreased from that observed by ASCA in 1993 and the spectrum is much harder.The large difference between the soft and hard spectral shapes does not favor the partial covering or scattering model of the ``soft excess. Instead, it is likely that the hard and soft nuclear components represent intrinsically different X-ray sources. Spectra of the extended emission to almost 1 kpc NE and SW of the nucleus have also been obtained. The spectra of these regions may be described by either thermal bremsstrahlung (kT simeq 0.4-0.7 keV) or power-law (Gamma simeq 2.5-3.2) continua plus 3 emission lines. There is an excellent correlation between the extended X-ray and [O III]lambda 5007 line emissions. We discuss the nature of the extended X-ray emission. Upper limit to the electron scattering column was obtained. This upper limit is much too low for the soft X-rays to be electron scattered nuclear radiation.
We observed the nearby, low-density globular cluster M71 (NGC 6838) with the Chandra X-ray Observatory to study its faint X-ray populations. Five X-ray sources were found inside the cluster core radius, including the known eclipsing binary millisecond pulsar (MSP) PSR J1953+1846A. The X-ray light curve of the source coincident with this MSP shows marginal evidence for periodicity at the binary period of 4.2 h. Its hard X-ray spectrum and luminosity resemble those of other eclipsing binary MSPs in 47 Tuc, suggesting a similar shock origin of the X-ray emission. A further 24 X-ray sources were found within the half-mass radius, reaching to a limiting luminosity of 1.5 10^30 erg/s (0.3-8 keV). From a radial distribution analysis, we find that 18+/-6 of these 29 sources are associated with M71, somewhat more than predicted, and that 11+/-6 are background sources, both galactic and extragalactic. M71 appears to have more X-ray sources between L_X=10^30--10^31 erg/s than expected by extrapolating from other studied clusters using either mass or collision frequency. We explore the spectra and variability of these sources, and describe the results of ground-based optical counterpart searches.
The Chandra X-ray Observatory is the X-ray component of NASAs Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASAs Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST -- formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا