Do you want to publish a course? Click here

Evidence for deceleration in the radio jets of GRS1915+105?

75   0   0.0 ( 0 )
 Added by James Miller-Jones
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is currently a clear discrepancy in the proper motions measured on different angular scales in the approaching radio jets of the black hole X-ray binary GRS1915+105. Lower velocities were measured with the Very Large Array (VLA) prior to 1996 than were subsequently found from higher-resolution observations made with the Very Long Baseline Array and the Multi-Element Radio Linked Interferometer Network. We initiated an observing campaign to use all three arrays to attempt to track the motion of the jet knots from the 2006 February outburst of the source, giving us unprecedented simultaneous coverage of all angular scales, from milliarcsecond scales out to arcsecond scales. The derived proper motion, which was dominated by the VLA measurements, was found to be 17.0 mas per day, demonstrating that there has been no significant permanent change in the properties of the jets since 1994. We find no conclusive evidence for deceleration of the jet knots, unless this occurs within 70 mas of the core. We discuss possible causes for the varying proper motions recorded in the literature.



rate research

Read More

We observed the galactic microquasar GRS1915+105 in the K ($2.2 mu$m) band on October 16 and 17, 1995 UTC using the COB infrared (IR) imager on the Kitt Peak National Observatory 2.1-m telescope with a 0.2-arcsec/pixel plate scale and under good ($sim 0.7$-arcsec) seeing conditions. Using a neighboring star in the image frames to determine the point spread function (PSF), we PSF-subtract the images of GRS1915+105. We find no evidence of extended emission such as the apparent near-IR jets seen by Sams et al. (1996) in July, 1995. Simple modelling of the star + jet structure allows us to place an upper limit on any similar emission at that position of $K>16.4$ at the 95% confidence level, as compared to $K=13.9$ as seen by Sams et al. (1996). This lack of extended IR flux during continued hard X-ray flaring activity confirms the hypothesis that the extended IR emission arises from the superluminal radio-emitting jets rather than reprocessing of the X-ray emission on other structures around the compact central object. Given the large apparent velocity of the radio-emitting jets, by the time of our observations the Sams et al. feature would have moved $>1$ arcsec from GRS1915+105, and we can place a limit of $K>17.7$ (95% confidence level) on any infrared emission in this region. We can thus place an upper limit on the radiative timescale of the feature of $tau < 25$ days, which is consistent with synchrotron jet emission.
81 - S. V. Vadawale 2001
We investigate the connection between the X-ray and radio properties of the Galactic microquasar GRS1915+105, by analyzing the X-ray data observed with RXTE, during the presence of a huge radio flare (~450 mJy). The X-ray lightcurve shows two dips of ~100 second duration. Detailed time resolved spectral analysis shows the existence of three spectral components: a multicolor disk-blackbody, a Comptonized component due to hot plasma and a power-law. We find that the Comptonized component is very weak during the dip. This is further confirmed by the PHA ratio of the raw data and ratio of the lightcurves in different energy bands. These results, combined with the fact that the 0.5 -- 10 Hz QPO disappears during the dip and that the Comptonized component is responsible for the QPO lead to the conclusion that during the dips the matter emitting Comptonized spectrum is ejected away. This establishes a direct connection between the X-ray and radio properties of the source.
We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths spanning the H and K bands. Our 24 epochs covering a baseline of over 1 year permit us to determine a new binary ephemeris including a refined orbital period of P=33.85 +/- 0.16 d. The donor star radial velocity curves deliver a significantly improved determination of the donor semi-amplitude which is both accurate (K_2=126 +/- 1 km/s) and robust against choice of donor star template and spectral features used. We furthermore constrain the donor stars rotational broadening to vsini=21 +/-4 km/s, delivering a binary mass ratio of q=0.042 +/- 0.024. If we combine these new constraints with distance and inclination estimates derived from modelling the radio emission, a black hole mass of M_BH=10.1 +/- 0.6 M_sun is inferred, paired with an evolved mass donor of M_2=0.47 +/- 0.27 M_sun. Our analysis suggests a more typical black hole mass for GRS1915+105 rather than the unusually high values derived in the pioneering dynamical study by Greiner et al. (2001). Our data demonstrate that high-resolution infrared spectroscopy of obscured accreting binaries can deliver dynamical mass determinations with a precision on par with optical studies.
Multifrequency radio continuum observations (1.4-22 GHz) of a sample of reddened QSOs are presented. We find a high incidence (13/16) of radio spectral properties, such as low frequency turnovers, high frequency spectral breaks or steep power-law slopes, similar to those observed in powerful compact steep spectrum (CSS) and gigahertz-peaked spectrum (GPS) sources. The radio data are consistent with relatively young radio jets with synchotron ages <1e6-1e7yr. This calculation is limited by the lack of high resolution (milli-arcsec) radio observations. For the one source in the sample that such data are available a much younger radio age is determined, <2e3yr, similar to those of GPS/CSS sources. These findings are consistent with claims that reddened QSOs are young systems captured at the first stages of the growth of their supermassive black holes. It also suggests that expanding radio lobes may be an important feedback mode at the early stages of the evolution of AGN.
GRS 1915+105 is a prominent black hole system exhibiting variability over a wide range of time scales and its observed light curves have been classified into 12 temporal states. Here we undertake a complete analysis of these light curves from all the states using various quantifiers from nonlinear time series analysis, such as, the correlation dimension (D_2), the correlation entropy (K_2), singular value decomposition (SVD) and the multifractal spectrum ($f(alpha)$ spectrum). An important aspect of our analysis is that, for estimating these quantifiers, we use algorithmic schemes which we have proposed recently and tested successfully on synthetic as well as practical time series from various fields. Though the schemes are based on the conventional delay embedding technique, they are automated so that the above quantitative measures can be computed using conditions prescribed by the algorithm and without any intermediate subjective analysis. We show that nearly half of the 12 temporal states exhibit deviation from randomness and their complex temporal behavior could be approximated by a few (3 or 4) coupled ordinary nonlinear differential equations. These results could be important for a better understanding of the processes that generate the light curves and hence for modelling the temporal behavior of such complex systems. To our knowledge, this is the first complete analysis of an astrophysical object (let alone a black hole system) using various techniques from nonlinear dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا