Do you want to publish a course? Click here

Gaia Data Processing Architecture

129   0   0.0 ( 0 )
 Added by William O'Mullane
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gaia is ESAs ambitious space astrometry mission the main objective of which is to astrometrically and spectro-photometrically map 1000 Million celestial objects (mostly in our galaxy) with unprecedented accuracy. The announcement of opportunity for the data processing will be issued by ESA late in 2006. The Gaia Data Processing and Analysis Consortium (DPAC) has been formed recently and is preparing an answer. The satellite will downlink close to 100 TB of raw telemetry data over 5 years. To achieve its required accuracy of a few 10s of Microarcsecond astrometry, a highly involved processing of this data is required. In addition to the main astrometric instrument Gaia will host a Radial Velocity instrument, two low-resolution dispersers for multi-color photometry and two Star Mappers. Gaia is a flying Giga Pixel camera. The various instruments each require relatively complex processing while at the same time being interdependent. We describe the overall composition of the DPAC and the envisaged overall architecture of the Gaia data processing system. We shall delve further into the core processing - one of the nine, so-called, coordination units comprising the Gaia processing system.



rate research

Read More

The Gaia Data Release 2 contains the 1st release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims: This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2. Methods: The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide 1st-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2. Results: The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude Grvs < 12 (i.e. brighter than V~13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in DR2, provides information about radial velocity variability. For the hottest (Teff > 7000 K) and coolest (Teff < 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. [Abridged]
The second Gaia data release is based on 22 months of mission data with an average of 0.9 billion individual CCD observations per day. A data volume of this size and granularity requires a robust and reliable but still flexible system to achieve the demanding accuracy and precision constraints that Gaia is capable of delivering. The internal Gaia photometric system was initialised using an iterative process that is solely based on Gaia data. A set of calibrations was derived for the entire Gaia DR2 baseline and then used to produce the final mean source photometry. The photometric catalogue contains 2.5 billion sources comprised of three different grades depending on the availability of colour information and the procedure used to calibrate them: 1.5 billion gold, 144 million silver, and 0.9 billion bronze. These figures reflect the results of the photometric processing; the content of the data release will be different due to the validation and data quality filters applied during the catalogue preparation. The photometric processing pipeline, PhotPipe, implements all the processing and calibration workflows in terms of Map/Reduce jobs based on the Hadoop platform. This is the first example of a processing system for a large astrophysical survey project to make use of these technologies. The improvements in the generation of the integrated G-band fluxes, in the attitude modelling, in the cross-matching, and and in the identification of spurious detections led to a much cleaner input stream for the photometric processing. This, combined with the improvements in the definition of the internal photometric system and calibration flow, produced high-quality photometry. Hadoop proved to be an excellent platform choice for the implementation of PhotPipe in terms of overall performance, scalability, downtime, and manpower required for operations and maintenance.
Gaia is an ambitious space astrometry mission of ESA with a main objective to map the sky in astrometry and photometry down to a magnitude 20 by the end of the next decade. While the mission is built and operated by ESA and an industrial consortium, the data processing is entrusted to a consortium formed by the scientific community, which was formed in 2006 and formally selected by ESA one year later. The satellite will downlink around 100 TB of raw telemetry data over a mission duration of 5 years from which a very complex iterative processing will lead to the final science output: astrometry with a final accuracy of a few tens of microarcseconds, epoch photometry in wide and narrow bands, radial velocity and spectra for the stars brighter than 17 mag. We discuss the general principles and main difficulties of this very large data processing and present the organisation of the European Consortium responsible for its design and implementation.
124 - M. Roelens , L. Eyer , N. Mowlavi 2018
The Gaia DR2 sample of short-timescale variable candidates results from the investigation of the first 22 months of Gaia photometry for a subsample of sources at the Gaia faint end. For this exercise, we limited ourselves to the case of suspected rapid periodic variability. Our study combines fast-variability detection through variogram analysis, high-frequency search by means of least-squares periodograms, and empirical selection based on the investigation of specific sources seen through the Gaia eyes (e.g. known variables or visually identified objects with peculiar features in their light curves). The progressive definition and validation of this selection criterion also benefited from supplementary ground-based photometric monitoring of a few preliminary candidates, performed at the Flemish Mercator telescope (Canary Islands, Spain) between August and November 2017. We publish a list of 3,018 short-timescale variable candidates, spread throughout the sky, with a false-positive rate up to 10-20% in the Magellanic Clouds, and a more significant but justifiable contamination from longer-period variables between 19% and 50%, depending on the area of the sky. Although its completeness is limited to about 0.05%, this first sample of Gaia short-timescale variables recovers some very interesting known short-period variables, such as post-common envelope binaries or cataclysmic variables, and brings to light some fascinating, newly discovered variable sources. In the perspective of future Gaia data releases, several improvements of the short-timescale variability processing are considered, by enhancing the existing variogram and period-search algorithms or by classifying the identified candidates. Nonetheless, the encouraging outcome of our Gaia DR2 analysis demonstrates the power of this mission for such fast-variability studies, and opens great perspectives for this domain of astrophysics.
The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the Data Cruncher, combines multiple data reduction pipelines together to process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow-up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our data reduction pipelines. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real-time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا