The HEGRA gamma-ray source TeV J2032+4130 is considered the prototypical dark accelerator, since it was the first TeV source detected with no firm counterparts at lower frequencies. The Whipple collaboration observed this source in 2003-5 and the emission hotspot appears displaced about 9 arcminutes to the northeast of the HEGRA position, though given the large positional uncertainties the HEGRA and Whipple positions are consistent. Here we report on Westerbork Synthesis Radio Telescope (WSRT), Very Large Array (VLA), Chandra and INTEGRAL data covering the locations of the Whipple and HEGRA hotspots. We confirm a dual-lobed radio source (also see Marti et al., 2007) coincident with the Whipple hotspot, as well as a weak, partially non-thermal shell-like object, with a location and morphology very similar to the HEGRA source, in our WSRT and mosaicked VLA datasets, respectively. Due to its extended nature, it is likely that the latter structure is a more plausible counterpart of the reported very high energy (VHE) gamma-ray emissions in this region. If so, TeV J2032+4130 may not be a dark accelerator after all. Further observations with the new generation of imaging Cherenkov telescopes are needed to pin down the precise location and morphology of the TeV emission region and thus clear up the confusion over its possible lower frequency counterparts.