Do you want to publish a course? Click here

Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy

391   0   0.0 ( 0 )
 Added by Brenda L. Dingus
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.



rate research

Read More

Recently the Milagro experiment observed diffuse multi-TeV gamma-ray emission in the Cygnus region, which is significantly stronger than what predicted by the Galactic cosmic ray model. However, the sub-GeV observation by EGRET shows no excess to the prediction based on the same model. This TeV excess implies possible high energy cosmic rays populated in the region with harder spectrum than that observed on the Earth. In the work we studied this theoretical speculation in detail. We find that, a diffuse proton source with power index $alpha_plesssim 2.3$, or a diffuse electron source with power index $alpha_elesssim2.6$ can reproduce the Milagros observation without conflicting with the EGRET data. Further detections on neutrinos, a diagnostic of the hadronic model, and hard X-ray synchrontron radiation, a diagnostic of the lepton model, help to break this degeneracy. In combination with the gamma ray observations to several hundred GeV by Fermi, we will be able to understand the diffuse emission mechanisms in the Cygnus region better.
The Cygnus arm of our galaxy is a source-rich and complex region hosting multiple gamma-ray source types such as pulsar wind nebulae (PWN), supernova remnants, binary systems, and star clusters. The High Altitude Water Cherenkov (HAWC) observatory has been collecting data continuously since 2015 and has reported five sources within the Cygnus region. Several other instruments have also observed gamma-ray sources in this region. For instance, Fermi-LAT found gamma-ray emission at GeV energies due to a Cocoon of freshly accelerated cosmic rays, which is co-located with a known PWN TeV 2032+4130 seen by several TeV gamma-ray observatories. TeV J2032+4130 is likely powered by the pulsar PSR J2032+4127 based on the multi-wavelength observation and asymmetric morphology reported by VERITAS. The study of HAWC data will provide more information regarding the morphology, emission origin, and the correlation with the GeV emission. This presentation will discuss the analysis of data collected with the HAWC instrument and the Fermi-LAT and the results obtained to provide a deeper understanding of the Cygnus Cocoon across five decades of energy range.
We report observations of gamma-ray emissions with energies in the 100 TeV energy region from the Cygnus region in our Galaxy. Two sources are significantly detected in the directions of the Cygnus OB1 and OB2 associations. Based on their positional coincidences, we associate one with a pulsar PSR J2032+4127 and the other mainly with a pulsar wind nebula PWN G75.2+0.1 with the pulsar moving away from its original birthplace situated around the centroid of the observed gamma-ray emission. This work would stimulate further studies of particle acceleration mechanisms at these gamma-ray sources.
147 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
The W49 region hosts two bright radio sources: the star forming region W49A and the supernova remnant W49B. The 10^6 M_odot Giant Molecular Cloud W49A is one of the most luminous giant radio HII regions in our Galaxy and hosts several active, high-mass star formation sites. The mixed-morphology supernova remnant W49B has one of the highest surface brightness in radio of all the SNRs of this class in our Galaxy and is one of the brightest ejecta-dominated SNRs in X-rays. Infrared observations evidenced that W49B is interacting with molecular clouds and Fermi recently reported the detection of a coincident bright, high-energy gamma-ray source. Observations by the H.E.S.S. telescope array resulted in the significant detection of VHE gamma-ray emission from the W49 region, compatible with VHE emission from the SNR W49B. The results, the morphology and the origin of the VHE emission are presented in the multi-wavelength context and the implications on the origin of the signal are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا