No Arabic abstract
Based on three years of deep observations of the Galactic center with the Chandra X-ray Observatory, we report the discovery of changes in the intensities and morphologies of two hard X-ray nebulosities. The nebulosities are dominated by fluorescent iron emission, and are coincident with molecular clouds. The morphological changes are manifest on parsec scales, which requires that these iron features are scattered X-rays from a 2 or 3-year-long outburst of a point source (either Sgr A* or an X-ray binary) with a luminosity of at least 1e37 erg/s. The variability precludes the hypotheses that these nebulae either are produced by keV electrons bombarding molecular clouds, or are iron-rich ejecta from supernovae. Moreover, the morphologies of the reflection nebulae implies that the dense regions of the clouds are filamentary, with widths of ~0.3 pc and lengths of ~2 pc.
The X-ray polarization properties of the reflection nebulae in the Galactic center inform us about the direction of the illuminating source (through the polarization angle) and the cloud position along the line of sight (through the polarization degree). However, the detected polarization degree is expected to be lowered because the polarized emission of the clouds is mixed with the unpolarized diffuse emission that permeates the Galactic center region. In a real observation, also the morphological smearing of the source due to the point spread function and the unpolarized instrumental background contribute in diluting the polarization degree. So far, these effects have never been included in the estimation of the dilution. We evaluate the detectability of the X-ray polarization predicted for the MC2, Bridge-B2, G0.11-0.11, Sgr B2, Sgr C1, Sgr C2, and Sgr C3 molecular clouds with modern X-ray imaging polarimeters such as the Imaging X-ray Polarimetry Explorer (IXPE) and the Enhanced X-ray Timing and Polarimetry mission (eXTP). We perform realistic simulations of X-ray polarimetric observations considering (with the aid of Chandra maps and spectra) the spatial, spectral, and polarization properties of all the diffuse emission and background components in each region of interest. We find that in the 4.0-8.0 keV band, where the emission of the molecular clouds outshines the other components, the dilution of the polarization degree, including the contribution due to the morphological smearing of the source, ranges between $sim$19% and $sim$55%. We conclude that for some distance values reported in the literature, the diluted polarization degree of G0.11-0.11, Sgr B2, Bridge-B2, Bridge-E, Sgr C1, and Sgr C3 may be detectable in a 2 Ms long IXPE observations. The enhanced capabilities of eXTP may allow detecting the 4.0-8.0 keV of all the targets considered here.
We constrain the iron abundance in a sample of 33 low-ionization Galactic planetary nebulae (PNe) using [Fe III] lines and correcting for the contribution of higher ionization states with ionization correction factors (ICFs) that take into account uncertainties in the atomic data. We find very low iron abundances in all the objects, suggesting that more than 90% of their iron atoms are condensed onto dust grains. This number is based on the solar iron abundance and implies a lower limit on the dust-to-gas mass ratio, due solely to iron, of M_dust/M_gas>1.3x10^{-3} for our sample. The depletion factors of different PNe cover about two orders of magnitude, probably reflecting differences in the formation, growth, or destruction of their dust grains. However, we do not find any systematic difference between the gaseous iron abundances calculated for C-rich and O-rich PNe, suggesting similar iron depletion efficiencies in both environments. The iron abundances of our sample PNe are similar to those derived following the same procedure for a group of 10 Galactic H II regions. These high depletion factors argue for high depletion efficiencies of refractory elements onto dust grains both in molecular clouds and AGB stars, and low dust destruction efficiencies both in interstellar and circumstellar ionized gas.
Any cold, optically-thick matter in the vicinity of an accreting black hole, such as the accretion disk, can intercept and reprocess some fraction of the hard X-ray continuum emission, thereby imprinting atomic features into the observed spectrum. This process of `X-ray reflection primarily gives rise to a broad reflection `hump peaking at 30keV and an iron emission line at 6.4keV. In this review, I briefly describe the physics of this process before reviewing the observations of these features in active galactic nuclei (AGN) and Galactic black hole candidates (GBHCs). In some AGN, Seyfert galaxies in particular, the iron line is found to be very broad and asymmetric. It is believed that such lines arise from the innermost regions of the accretion disk, with mildly-relativistic Doppler shifts and gravitational redshifts combining to produce the line profile. Hence, such lines give us a direct observational probe of the region within several gravitational radii of the black hole. The complications that plague similar studies of GBHCs, such as disk ionization and the possibly of inner disk disruption, are also addressed. I conclude with a discussion of iron line reverberation, i.e. temporal changes of the iron line as `echos of large X-ray flares sweep across the accretion disk. It is shown that interesting reverberation effects, such as a definitive signature of extremal Kerr geometry, is within reach of high throughput spectrometers such as Constellation-X.
We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$alpha$ emission line were used to determine the kinematic features and nebular orientations. Our findings show that some bulge planetary nebulae toward the Galactic center have a particular orientation.
We present near-infrared (IR) spectra of two planetary nebula (PN) candidates in close lines of sight toward the Galactic center (GC) using the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini North. High-resolution images from radio continuum and narrow-band IR observations reveal ringlike or barrel-shaped morphologies of these objects, and their mid-IR spectra from the Spitzer Space Telescope exhibit rich emission lines from highly-excited species such as [S IV], [Ne III], [Ne V], and [O IV]. We also derive elemental abundances using the Cloudy synthetic models, and find an excess amount of the $s$-process element Krypton in both targets, which supports their nature as PN. We estimate foreground extinction toward each object using near-IR hydrogen recombination lines, and find significant visual extinctions ($A_V > 20$). The distances inferred from the size versus surface brightness relation of other PNe are $9.0pm1.6$ kpc and $7.6pm1.6$ kpc for SSTGC 580183 and SSTGC 588220, respectively. These observed properties along with abundance patterns and their close proximity to Sgr A$^*$ (projected distances $<20$ pc) make it highly probable that these objects are the first confirmed PN objects in the nuclear stellar disk. The apparent scarcity of such objects resembles the extremely low rate of PN formation in old stellar systems, but is in line with the current rate of the sustained star formation activity in the Central Molecular Zone.