No Arabic abstract
* Aims. Identify optical counterparts, address uncertain identifications and measure previously unknown redshifts of the host galaxies of candidate GPS radio sources, and study their stellar populations. * Methods. Long slit spectroscopy and deep optical imaging in the B, V and R bands, obtained with the Very Large Telescope. * Results. We obtain new redshifts for B0316+161, B0407-658, B0904+039, B1433-040, and identify the optical counterparts of B0008-421 and B0742+103. We confirm the previous identification for B0316+161, B0407-658, B0554-026, and B0904+039, and find that the previous identification for B0914+114 is incorrect. Using updated published radio spectral information we classify as non GPS the following sources: B0407-658, B0437-454, B1648+015. The optical colors of typical GPS sources are consistent with single instantaneous burst stellar population models but do not yield useful information on age or metallicity. A new master list of GPS sources is presented.
A short overview is given of the status of research on young extragalactic radio sources. We concentrate on Very Long Baseline Interferometric (VLBI), and space-VLBI results obtained with the VLBI Space Observatory Programme (VSOP). In 2012, VSOP-2 will be launched, which will allow VLBI observations at an unprecedented angular resolution. One particular question VSOP-2 could answer is whether some of the High Frequency Peakers (HFP) are indeed the youngest objects in the family of GPS and CSS sources. VSOP-2 observations can reveal their angular morphology and determine whether any are Ultra-compact Symmetric Objects.
Extended radio emission detected around a sample of GHz Peaked Spectrum (GPS) radio sources is discussed. Evidence for extended emission which is related to the GPS source is found in 6 objects out of 33. Three objects are associated with quasars with core-jet pc-scale morphology, and three are identified with galaxies with symmetric (CSO) radio morphology. We conclude that the core-jet GPS quasars are likely to be beamed objects with a continuous supply of energy from the core to the kpc scale. It is also possible that low surface brightness extended radio emission is present in other GPS quasars but the emission is below our detection limit due to the high redshifts of the objects. On the other hand, the CSO/galaxies with extended large scale emission may be rejuvenated sources where the extended emission is the relic of previous activity. In general, the presence of large scale emission associated with GPS galaxies is uncommon, suggesting that in the context of the recurrent activity model, the time scale between subsequent bursts is in general longer than the radiative lifetime of the radio emission from the earlier activity.
We present a variability study of a sample of bright gamma-ray (30 MeV -- 50 GeV) sources. This sample is an extension of the first AGILE catalogue of gamma-ray sources (1AGL), obtained using the complete set of AGILE observations in pointing mode performed during a 2.3 year period from July 9, 2007 until October 30, 2009. The dataset of AGILE pointed observations covers a long time interval and its gamma-ray data archive is useful for monitoring studies of medium-to-high brightness gamma-ray sources. In the analysis reported here, we used data obtained with an improved event filter that covers a wider field of view, on a much larger (about 27.5 months) dataset, integrating data on observation block time scales, which mostly range from a few days to thirty days. The data processing resulted in a better characterized source list than 1AGL was, and includes 54 sources, 7 of which are new high galactic latitude (|BII| >= 5) sources, 8 are new sources on the galactic plane, and 20 sources from the previous catalogue with revised positions. Eight 1AGL sources (2 high-latitude and 6 on the galactic plane) were not detected in the final processing either because of low OB exposure and/or due to their position in complex galactic regions. We report the results in a catalogue of all the detections obtained in each single OB, including the variability results for each of these sources. In particular, we found that 12 sources out of 42 or 11 out of 53 are variable, depending on the variability index used, where 42 and 53 are the number of sources for which these indices could be calculated. Seven of the 11 variable sources are blazars, the others are Crab pulsar+nebula, LS I +61{deg}303, Cyg X-3, and 1AGLR J2021+4030.
After our Ap.J. publication of the Akeno Giant Air Shower Array (AGASA) results in 1999 (Takeda et al., 1999), we observed nine events with energies above 4 $times$ 10$^{19}$eV until May 2000. This short report lists the coordinates of these events, and shows the updated energy spectrum and arrival direction map. The analysis was carried out with the same procedure employed in the Ap.J. publication.