Do you want to publish a course? Click here

The soft X-ray Cluster-AGN spatial cross-correlation function in the ROSAT-NEP survey

281   0   0.0 ( 0 )
 Added by Nico Cappelluti
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters. The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a > 3 sigma significant clustering signal on scales s<50 h_70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7^+1.2_-0.3 h70^-1 Mpc and a slope gamma=1.7^+0.2_-0.7 (1 sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, a similar behaviour of the AGNs clustering around clusters similar to the clustering of galaxies around clusters.



rate research

Read More

X-ray surveys facilitate investigations of the environment of AGNs. Deep Chandra observations revealed that the AGNs source surface density rises near clusters of galaxies. The natural extension of these works is the measurement of spatial clustering of AGNs around clusters and the investigation of relative biasing between active galactic nuclei and galaxies near clusters.The major aims of this work are to obtain a measurement of the correlation length of AGNs around clusters and a measure of the averaged clustering properties of a complete sample of AGNs in dense environments. We present the first measurement of the soft X-ray cluster-AGN cross-correlation function in redshift space using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the North Ecliptic Pole where 442 X-ray sources were detected and almost completely spectroscopically identified. We detected a >3sigma significant clustering signal on scales s<50 h70^-1 Mpc. We performed a classical maximum-likelihood power-law fit to the data and obtained a correlation length s_0=8.7+1.2-0.3 h_70-1 Mpc and a slope gamma=1.7$^+0.2_-0.7 (1sigma errors). This is a strong evidence that AGNs are good tracers of the large scale structure of the Universe. Our data were compared to the results obtained by cross-correlating X-ray clusters and galaxies. We observe, with a large uncertainty, that the bias factor of AGN is similar to that of galaxies.
We investigate the clustering properties of ~1550 broad-line active galactic nuclei (AGNs) at <z>=0.25 detected in the ROSAT All-Sky Survey (RASS) through their measured cross-correlation function with ~46,000 Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey. By measuring the cross-correlation of our AGN sample with a larger tracer set of LRGs, we both minimize shot noise errors due to the relatively small AGN sample size and avoid systematic errors due to the spatially varying Galactic absorption that would affect direct measurements of the auto-correlation function (ACF) of the AGN sample. The measured ACF correlation length for the total RASS-AGN sample (<L_(0.1-2.4 keV)>=1.5 x 10^(44) erg/s) is r_0=4.3^{+0.4}_{-0.5} h^(-1) Mpc and the slope gamma=1.7^{+0.1}_{-0.1}. Splitting the sample into low and high L_X samples at L_(0.5-10 keV)=10^(44) erg/s, we detect an X-ray luminosity dependence of the clustering amplitude at the ~2.5 sigma level. The low L_X sample has r_0=3.3^{+0.6}_{-0.8} h^(-1) Mpc (gamma=1.7^{+0.4}_{-0.3}), which is similar to the correlation length of blue star-forming galaxies at low redshift. The high L_X sample has r_0=5.4^{+0.7}_{-1.0} h^(-1) Mpc (gamma=1.9^{+0.2}_{-0.2}), which is consistent with the clustering of red galaxies. From the observed clustering amplitude, we infer that the typical dark matter halo (DMH) mass harboring RASS-AGN with broad optical emission lines is log (M_DMH/(h^(-1) M_SUN)) =12.6^{+0.2}_{-0.3}, 11.8^{+0.6}_{-infty}, 13.1^{+0.2}_{-0.4} for the total, low L_X, and high L_X RASS-AGN samples, respectively.
We present a detailed description of the first direct measurement of the spatial correlation function of X-ray selected AGN. This result is based on an X-ray flux-limited sample of 219 AGN discovered in the contiguous 80.7 deg^2 region of the ROSAT North Ecliptic Pole (NEP) Survey. Clustering is detected at the 4 sigma level at comoving scales in the interval r = 5-60 h^-1 Mpc. Fitting the data with a power law of slope gamma=1.8, we find a correlation length of r_0 = 7.4 (+1.8, -1.9) h^-1 Mpc (Omega_M=0.3, Omega_Lambda=0.7). The median redshift of the AGN contributing to the signal is z_xi=0.22. This clustering amplitude implies that X-ray selected AGN are spatially distributed in a manner similar to that of optically selected AGN. Furthermore, the ROSAT NEP determination establishes the local behavior of AGN clustering, a regime which is poorly sampled in general. Combined with high-redshift measures from optical studies, the ROSAT NEP results argue that the AGN correlation strength essentially does not evolve with redshift, at least out to z~2.2. In the local Universe, X-ray selected AGN appear to be unbiased relative to galaxies and the inferred X-ray bias parameter is near unity, b_X~1. Hence X-ray selected AGN closely trace the underlying mass distribution. The ROSAT NEP AGN catalog, presented here, features complete optical identifications and spectroscopic redshifts. The median redshift, X-ray flux, and X-ray luminosity are z=0.41, f_X=1.1*10^-13 cgs, and L_X=9.2*10^43 h_70^-2 cgs (0.5-2.0 keV), respectively. Unobscured, type 1 AGN are the dominant constituents (90%) of this soft X-ray selected sample of AGN.
We present a study of the X-ray properties of a volume-limited sample of optically selected emission-line galaxies. The sample is derived from a correlation between the KPNO International Spectroscopic Survey (KISS), an H-alpha-selected objective-prism survey of AGNs and starbursting galaxies, and the ROSAT All-Sky Survey (RASS). After elimination of all spurious matches, we identify 18 ROSAT-detected X-ray sources within the KISS sample in the 0.1-2.4 keV band. Due to soft X-ray selection effects, the majority of the ROSAT sources are Seyfert 1 galaxies. The majority (54%) of the ROSAT-KISS Seyferts are classified as narrow-line Seyfert 1 objects, a relatively high percentage compared to previous objective-prism-selected Seyfert galaxy samples. We estimate the X-ray luminosities of the ROSAT-detected KISS objects and derive volume emissivities of 6.63 x 10^38 ergs/s/Mpc^3 and 1.45 x 10^38 ergs/s/Mpc^3 for the 30 deg and 43 deg survey strips, respectively. For those KISS AGNs not detected by RASS, we use the median L_X/L_H-alpha ratio derived from a previous study to estimate L_X. The total 0.5-2 keV volume emissivity we predict for the overall KISS AGN sample is sufficient to account for 22.1 +/- 8.9% of the soft X-ray background (XRB), averaged over both survey strips. The KISS AGN sample is made up predominantly of intermediate-luminosity Seyfert 2s and LINERs, which tend to be weak soft X-ray sources. They may, however, represent a much more significant contribution to the hard XRB.
441 - Takamitsu Miyaji 2010
This is the second paper of a series that reports on our investigation of the clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies (LRGs) in the redshift range 0.16<z<0.36 that was calculated in paper I. In our HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of the AGNs by a model fit to the CCF. For the first time, we are able to go beyond quoting merely a `typical AGN host halo mass, M_h, and model the full distribution function of AGN host dark matter halos. In addition, we are able to determine the large-scale bias and the mean M_h more accurately. We explore the behavior of three simple HOD models. Our first model (Model A) is a truncated power-law HOD model in which all AGNs are satellites. With this model, we find an upper limit to the slope (alpha) of the AGN HOD that is far below unity. The other two models have a central component, which has a step function form, where the HOD is constant above a minimum mass, without (Model B) or with (Model C) an upper mass cutoff, in addition to the truncated power-law satellite component, similar to the HOD that is found for galaxies. In these two models we find the upper limits of alpha < 0.95 and alpha < 0.84 for Model B and C respectively. Our analysis suggests that the satellite AGN occupation increases slower than, or may even decrease with, M_h, in contrast to the satellites HODs of luminosity-threshold samples of galaxies, which, in contrast, grow approximately as propto M_h^alpha with alphaapprox 1. These results are consistent with observations that the AGN fraction in groups and clusters decreases with richness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا