No Arabic abstract
In this paper we report on the third soft gamma-ray source catalog obtained with the IBIS/ISGRI gamma-ray imager on board the INTEGRAL satellite. The scientific dataset is based on more than 40 Ms of high quality observations performed during the first three and a half years of Core Program and public IBIS/ISGRI observations. Compared to previous IBIS/ISGRI surveys, this catalog includes a substantially increased coverage of extragalactic fields, and comprises more than 400 high-energy sources detected in the energy range 17-100 keV, including both transients and faint persistent objects which can only be revealed with longer exposure times.
In this paper we report on the fourth soft gamma-ray source catalog obtained with the IBIS gamma-ray imager on board the INTEGRAL satellite. The scientific dataset is based on more than 70Ms of high quality observations performed during the first five and a half years of Core Program and public observations. Compared to previous IBIS surveys, this catalog includes a substantially increased coverage of extragalactic fields, and comprises more than 700 high-energy sources detected in the energy range 17--100 keV, including both transients and faint persistent objects which can only be revealed with longer exposure times. A comparison is provided with the latest Swift/BAT survey results.
For the first time in the history of high energy astronomy, a large CdTe gamma-ray camera is operating in space. ISGRI is the low-energy camera of the IBIS telescope on board the INTEGRAL satellite. This paper details its design and its in-flight behavior and performances. Having a sensitive area of 2621 cm$^2$ with a spatial resolution of 4.6 mm, a low threshold around 12 keV and an energy resolution of $sim$ 8% at 60 keV, ISGRI shows absolutely no signs of degradation after 9 months in orbit. All aspects of its in-flight behavior and scientific performance are fully nominal, and in particular the observed background level confirms the expected sensitivity of 1 milliCrab for a 10$^6$s observation.
Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two gamma-ray bursts (GRB) every three days. Here we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years, through the middle of July 2014. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300~keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy NaI(Tl) detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fitted by a two-component model with short-hard and long-soft bursts, than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
We present a first INTEGRAL observation of the 42s transient X-ray pulsar EXO 2030+375 with IBIS/ISGRI. The source was detected during Cyg X-1 observations in December 2002. We analyzed observations during the outburst period from 9 to 21 December 2002 with a total exposure time of ~770 kiloseconds. EXO 2030+375 was almost always detected during single ~30 minute exposures in the 18-45 energy bands. The source light curve shows the characteristic outburst shape observed in this source.
We present the new energy calibration of the ISGRI detector onboard INTEGRAL, that has been implemented in the Offline Scientific Analysis (OSA) version 10. With the previous OSA 9 version, a clear departure from stability of both W and 22Na background lines was observed after MJD 54307 (revolution ~583). To solve this problem, the energy correction in OSA 10 uses: 1) a new description for the gain depending on the time and the pulse rise time, 2) an improved temperature correction per module, and 3) a varying shape of the low threshold, corrected for the change in energy resolution. With OSA 10, both background lines show a remarkably stable behavior with a relative energy variation below 1% around the nominal position (>6% in OSA 9), and the energy reconstruction at low energies is more stable compared to previous O