Do you want to publish a course? Click here

The VLBA Imaging and Polarimetry Survey at 5 GHz

112   0   0.0 ( 0 )
 Added by Joe Helmboldt
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We have also developed an algorithm to use each sources I image to automatically classify it as a point-like source, a core-jet, a compact symmetric object (CSO) candidate, or a complex source. The mean ratio of the polarized to total 5 GHz flux density for VIPS sources with detected polarized flux density ranges from 1% to 20% with a median value of about 5%. We have also found significant evidence that the directions of the jets in core-jet systems tend to be perpendicular to the electric vector position angles (EVPAs). The data is consistent with a scenario in which ~24% of the polarized core-jets have EVPAs that are anti-aligned with the directions of their jet components and which have a substantial amount of Faraday rotation. In addition to these initial results, plans for future follow-up observations are discussed.



rate research

Read More

We examine the radio properties of EGRET-detected blazars observed as part of the VLBA Imaging and Polarimetry Survey (VIPS). VIPS has a flux limit roughly an order of magnitude below the MOJAVE survey and most other samples that have been used to study the properties of EGRET blazars. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux density. We do find that the EGRET-detected blazars tend to have higher brightness temperatures, greater core fractions, and possibly larger than average jet opening angles. A weak correlation is also found with jet length and with polarization. All of the well-established trends can be explained by systematically larger Doppler factors in the gamma-ray loud blazars, consistent with the measurements of higher apparent velocities found in monitoring programs carried out at radio frequencies above 10 GHz.
The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey (VIPS). This large, flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lacs tend to be similar to the non-LAT BL Lacs, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQs can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lacs. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGN.
The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA). In total, 232 sources were observed with the VLBA. Ninety sources that were previously observed as part of the VLBA Imaging and Polarimetry Survey (VIPS) have been included in the sample, as well as 142 sources not found in VIPS. This very large, flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. In particular, we see that gamma-ray emission is related to strong, uniform magnetic fields in the cores of the host AGN. Included in this sample are non-blazar AGN such as 3C84, M82, and NGC 6251. For the blazars, the total VLBA radio flux density at 5 GHz correlates strongly with gamma-ray flux. The LAT BL Lac objects tend to be similar to the non-LAT BL Lac objects, but the LAT flat-spectrum radio quasars (FSRQs) are significantly different from the non-LAT FSRQs. Strong core polarization is significantly more common among the LAT sources, and core fractional polarization appears to increase during LAT detection.
157 - G. B. Taylor 2005
We present full polarization Very Long Baseline Array (VLBA) observations at 5 GHz and 15 GHz of 24 compact active galactic nuclei (AGN). These sources were observed as part of a pilot project to demonstrate the feasibility of conducting a large VLBI survey to further our understanding of the physical properties and temporal evolution of AGN jets. The sample is drawn from the Cosmic Lens All-Sky Survey (CLASS) where it overlaps with the Sloan Digital Sky Survey at declinations north of 15 degrees. There are 2100 CLASS sources brighter than 50 mJy at 8.4 GHz, of which we have chosen 24 for this pilot study. All 24 sources were detected and imaged at 5 GHz with a typical dynamic range of 500:1, and 21 of 24 sources were detected and imaged at 15 GHz. Linear polarization was detected in 8 sources at both 5 and 15 GHz, allowing for the creation of Faraday rotation measure (RM) images. The core RMs for the sample were found to have an average absolute value of 390 +/- 100 rad/m^2. We also present the discovery of a new Compact Symmetric Object, J08553+5751. All data were processed automatically using pipelines created or adapted for the survey.
152 - X.-P. Cheng , T. An , S. Frey 2020
We present the observational results from the 43-GHz Very Long Baseline Array (VLBA) observations of 124 compact radio-loud active galactic nuclei (AGNs) that were conducted between 2014 November and 2016 May. The typical dimensions of the restoring beam in each image are about 0.5 mas $times$ 0.2 mas. The highest resolution of 0.2 mas corresponds to a physical size of 0.02 pc for the lowest redshift source in the sample. The 43-GHz very long baseline interferometry (VLBI) images of 97 AGNs are presented for the first time. We study the source compactness on milli-arcsec (mas) and sub-mas scales, and suggest that 95 sources in our sample are suitable for future space VLBI observations. By analyzing our data supplemented with other VLBA AGN surveys from literature, we find that the core brightness temperature increases with increasing frequency below a break frequency ~ 7 GHz, and decreases between ~7--240~GHz but increases again above~240 GHz in the rest frame of the sources. This indicates that the synchrotron opacity changes from optically thick to thin. We also find a strong statistical correlation between radio and $gamma$-ray flux densities. Our correlation is tighter than those in literature derived from lower-frequency VLBI data, suggesting that the $gamma$-ray emission is produced more co-spatially with the 43-GHz VLBA core emission. This correlation can also be extrapolated to the un-beamed AGN population, implying that a universal $gamma$-ray production mechanism might be at work for all types of AGNs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا