No Arabic abstract
The silicate cross section peak near 10um produces emission and absorption features in the spectra of dusty galactic nuclei observed with the Spitzer Space Telescope. Especially in ultraluminous infrared galaxies, the observed absorption feature can be extremely deep, as IRAS 08572+3915 illustrates. A foreground screen of obscuration cannot reproduce this observed feature, even at large optical depth. Instead, the deep absorption requires a nuclear source to be deeply embedded in a smooth distribution of material that is both geometrically and optically thick. In contrast, a clumpy medium can produce only shallow absorption or emission, which are characteristic of optically-identified active galactic nuclei. In general, the geometry of the dusty region and the total optical depth, rather than the grain composition or heating spectrum, determine the silicate features observable properties. The apparent optical depth calculated from the ratio of line to continuum emission generally fails to accurately measure the true optical depth. The obscuring geometry, not the nature of the embedded source, also determines the far-IR spectral shape.
In this study, we use the SWIFT/BAT AGN sample, which has received extensive multiwavelength follow-up analysis as a result of the BAT AGN Spectroscopic Survey (BASS), to develop a diagnostic for nuclear obscuration by examining the relationship between the line-of-sight column densities ($N_{rm{H}}$), the 2-10 keV-to-$12,rm{mu m}$ luminosity ratio, and WISE mid-infrared colors. We demonstrate that heavily obscured AGNs tend to exhibit both preferentially redder mid-infrared colors and lower values of $L_{rm{X,,Obs.}}$/$L_{12,rm{mu m}}$ than less obscured AGNs, and we derive expressions relating $N_{rm{H}}$ to the $L_{rm{X,,Obs.}}$/$L_{12,rm{mu m}}$ and $L_{22,rm{mu m}}$/$L_{4.6,rm{mu m}}$ luminosity ratios as well as develop diagnostic criteria using these ratios. Our diagnostic regions yield samples that are $gtrsim80$% complete and $gtrsim60$% pure for AGNs with log($N_{rm{H}})geq24$, as well as $gtrsim85$% pure for AGNs with $rm{log}(N_{rm{H}})gtrsim23.5$. We find that these diagnostics cannot be used to differentiate between optically star forming galaxies and active galaxies. Further, mid-IR contributions from host galaxies that dominate the observed $12~rm{mu m}$ emission can lead to larger apparent X-ray deficits and redder mid-IR colors than the AGNs would intrinsically exhibit, though this effect helps to better separate less obscured and more obscured AGNs. Finally, we test our diagnostics on two catalogs of AGNs and infrared galaxies, including the XMM-Newton XXL-N field, and we identify several known Compton-thick AGNs as well as a handful of candidate heavily obscured AGNs based upon our proposed obscuration diagnostics.
In this paper I summarize the science motivations, as well as a few mid-infrared spectroscopic methods used to identify the principal mechanisms of energy production in dust enshrouded galactic nuclei. The development of the various techniques is briefly discussed. Emphasis is given to the use of the data which are becoming available with the infrared spectrograph (IRS) on Spitzer, as well as the results which have been obtained by IRS over the past two years.
We present the first results from a mid-infrared survey of local Active Galactic Nuclei (AGN) using the CanariCam (CC) instrument on the 10.4m Gran Telescopio Canarias (GTC). We are obtaining sub-arcsecond angular resolution (0.3-0.6 arcsec) mid-IR imaging and spectroscopic observations of a sample of 100 local AGN, which are complemented with data taken with T-ReCS, VISIR, and Michelle. The full sample contains approximately 140 AGN, covers nearly six orders of magnitude in AGN luminosity, and includes low-luminosity AGN (LLAGN), Seyfert 1s and 2s, QSO, radio galaxies, and (U)LIRGs. The main goals of this project are: (1) to test whether the properties of the dusty tori of the AGN Unified Model depend on the AGN type, (2) to study the nuclear star formation activity and obscuration of local AGN, and (3) to explore the role of the dusty torus in LLAGN.
The central engines of Seyfert galaxies are thought to be enshrouded by geometrically thick gas and dust structures. In this article, we derive observable properties for a self-consistent model of such toroidal gas and dust distributions, where the geometrical thickness is achieved and maintained with the help of X-ray heating and radiation pressure due to the central engine. Spectral energy distributions (SEDs) and images are obtained with the help of dust continuum radiative transfer calculations with RADMC-3D. For the first time, we are able to present time-resolved SEDs and images for a physical model of the central obscurer. Temporal changes are mostly visible at shorter wavelengths, close to the combined peak of the dust opacity as well as the central source spectrum and are caused by variations in the column densities of the generated outflow. Due to the three-component morphology of the hydrodynamical models -- a thin disc with high density filaments, a surrounding fluffy component (the obscurer) and a low density outflow along the rotation axis -- we find dramatic differences depending on wavelength: whereas the mid-infrared images are dominated by the elongated appearance of the outflow cone, the long wavelength emission is mainly given by the cold and dense disc component. Overall, we find good agreement with observed characteristics, especially for those models, which show clear outflow cones in combination with a geometrically thick distribution of gas and dust, as well as a geometrically thin, but high column density disc in the equatorial plane.
We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.