Do you want to publish a course? Click here

654 GHz Continuum and C18O (6-5) Observations of G240.31+0.07 with the Submillimeter Array

60   0   0.0 ( 0 )
 Added by Huei-Ru Chen
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a dual-band observation at 223 and 654 GHz (460 micron) toward an ultracompact (UC) HII region, G240.31+0.07, with the Submillimeter Array. With a beam size of 15 X 08, the dust continuum emission is resolved into two clumps, with clump A coincident well with an H2O maser and the UC HII region. The newly discovered clump, B, about 13 (~8.3 X 10^3 AU) to the southwest of clump A, is also associated with H2O masers and may be a more recent star-forming site. The continuum flux densities imply an opacity spectral index of beta = 1.5 +- 0.3, suggestive of a value lower than the canonical 2.0 found in the interstellar medium and in cold, massive cores. The presence of hot (~100 K) molecular gas is derived by the brightness ratio of two H2CO lines in the 223 GHz band. A radial velocity difference of 2.5 +- 0.4 km/s is found between the two clumps in C18O (6-5) emission. The total (nebular and stellar) mass of roughly 58 Msun in the central region is close to, but not by far larger than, the minimum mass required for the two clumps to be gravitationally bound for binary rotation. Our continuum data do not suggest a large amount of matter associated with the H2 knots that were previously proposed to arise from a massive disk or envelope.



rate research

Read More

We present high-resolution (~2.5) observations of 12CO J=6-5 towards the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect 12CO J=6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new 12CO J=6-5 observations with previously published or archival low-J CO observations, that include 13CO J=1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer code RADEX and a Bayesian likelihood code to constrain the temperature (T_kin), density (n(H2)) and column density (N(12CO)) of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T_kin = 38 K), moderately dense (n(H2) = 10^2.89 cm^-3) molecular gas component. We find the most probable 12CO to 13CO abundance ratio ([12CO]/[13CO]) is 229, roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high 12CO/ 13CO line ratio (> 25). The unusual 13CO J=2-1/J=1-0 line ratio of 0.6 is produced by a combination of moderate 13CO optical depths (tau = 0.4 - 1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H2 conversion factor, alpha_co to be 0.5 M_sol (K km s^-1 pc^2)^-1, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes & Solomon (1998; alpha_co =0.8 M_sol (K km s^-1 pc^2)^-1).
Discovered in 1995 at the Caltech Submillimeter Observatory (CSO), the vibrationally-excited water maser line at 658 GHz (455 micron) is seen in oxygen-rich giant and supergiant stars. Because this maser can be so strong (up to thousands of Janskys), it was very helpful during the commissioning phase of the highest frequency band (620-700 GHz) of the Submillimeter Array (SMA) interferometer. From late 2002 to early 2006, brief attempts were made to search for emission from additional sources beyond the original CSO survey. These efforts have expanded the source count from 10 to 16. The maser emission appears to be quite compact spatially, as expected from theoretical considerations; thus these objects can potentially be used as atmospheric phase calibrators. Many of these objects also exhibit maser emission in the vibrationally-excited SiO maser at 215 GHz. Because both maser lines likely originate from a similar physical region, these objects can be used to test techniques of phase transfer calibration between millimeter and submillimeter bands. The 658 GHz masers will be important beacons to assess the performance of the Atacama Large Millimeter Array (ALMA) in this challenging high-frequency band.
We report on the results of a Submillimeter Array interferometric observation of the proto-planetary nebula CRL 618 in the 12CO J=6-5 line. With the new capability of SMA enabling us to use two receivers at a time, we also observed simultaneously in the 12CO J=2-1 and 13CO J=2-1 lines. The 12CO J=6-5 and 13CO J=2-1 lines were first interferometrically observed toward CRL 618. The flux of the high velocity component of the 12CO J=6-5 line is almost fully recovered, while roughly 80% of the flux of the low velocity component is resolved out. The low recovery rate suggests that the emission region of the low velocity component of the 12CO J=6-5 line is largely extended. Continuum emission is detected both at 230 and 690 GHz. The flux of the 690 GHz continuum emission seems to be partially resolved out, suggesting dust emission partly contaminates the 690 GHz continuum flux. The cavity structure, which has been confirmed in a previous observation in the 12CO J=2-1 line, is not clearly detected in the 12CO J=6-5 line, and only the south wall of the cavity is detected. This result suggests that the physical condition of the molecular envelope of CRL 618 is not exactly axial symmetric.
Phase closure at 682 GHz and 691 GHz was first achieved using three antennas of the Submillimeter Array (SMA) interferometer located on Mauna Kea, Hawaii. Initially, phase closure was demonstrated at 682.5 GHz on Sept. 19, 2002 using an artificial ground-based beacon signal. Subsequently, astronomical detections of both Saturn and Uranus were made at the frequency of the CO(6-5) transition (691.473 GHz) on all three baselines on Sept. 22, 2002. While the larger planets such as Saturn are heavily resolved even on these short baselines (25.2m, 25.2m and 16.4m), phase closure was achieved on Uranus and Callisto. This was the first successful experiment to obtain phase closure in this frequency band. The CO(6-5) line was also detected towards Orion BN/KL and other Galactic sources, as was the vibrationally-excited 658 GHz water maser line toward evolved stars. We present these historic detections, as well as the first arcsecond-scale images obtained in this frequency band.
269 - S. Chatterjee 2003
We present the first pulsar parallaxes measured with phase-referenced pulsar VLBI observations at 5 GHz. Due to the steep spectra of pulsars, previous astrometric measurements have been at lower frequencies. However, the strongest pulsars can be observed at 5 GHz, offering the benefit of lower combined ionospheric and tropospheric phase errors, which usually limit VLBI astrometric accuracy. The pulsars B0329+54, B0355+54 and B1929+10 were observed for 7 epochs spread evenly over 2 years. For B0329+54, large systematic errors lead to only an upper limit on the parallax (pi < 1.5 mas). A new proper motion and parallax were measured for B0355+54 (pi = 0.91 +- 0.16 mas), implying a distance of 1.04+0.21-0.16 kpc and a transverse velocity of 61+12-9 km/s. The parallax and proper motion for B1929+10 were significantly improved (pi = 2.77 +- 0.07 mas), yielding a distance of 361+10-8 pc and a transverse velocity of 177+4-5 km/s. We demonstrate that the astrometric errors are correlated with the angular separation between the phase reference calibrator and the target source, with significantly lower errors at 5 GHz compared to 1.6 GHz. Finally, based on our new distance determinations for B1929+10 and B0355+54, we derive or constrain the luminosities of each pulsar at high energies. We show that, for thermal emission models, the emitting area for X-rays from PSR B1929+10 is roughly consistent with the canonical size for a heated polar cap, and that the conversion of spin-down power to gamma-ray luminosity in B0355+54 must be low. The new proper motion for B1929+10 also implies that its progenitor is unlikely to have been the binary companion of the runaway O-star zeta-Ophiuchi.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا