Do you want to publish a course? Click here

Swift and XMM-Newton Observations of the Extraordinary GRB 060729: An afterglow with a more than 100 days X-ray light curve

151   0   0.0 ( 0 )
 Added by Dirk Grupe
 Publication date 2006
  fields Physics
and research's language is English
 Authors Dirk Grupe




Ask ChatGPT about the research

We report the results of the Swift and XMM observations of the Swift-discovered long Gamma-Ray Burst GRB 060729 ($T_{90}$=115s). The afterglow of this burst was exceptionally bright in X-rays as well as at UV/Optical wavelengths showing an unusually long slow decay phase ($alpha$=0.14plm0.02) suggesting a larger energy injection phase at early times than in other bursts. The X-ray light curve displays a break at about 60 ks after the burst. The X-ray decay slope after the break is $alpha$=1.29plm0.03. Up to 125 days after the burst we do not detect a jet break, suggesting that the jet opening angle is larger than 28 degrees. In the first 2 minutes after the burst (rest frame) the X-ray spectrum of the burst changed dramatically from a hard X-ray spectrum to a very soft one. We find that the X-ray spectra at this early phase can all be fitted by an absorbed single power law model or alternatively by a blackbody plus power law model. The power law fits show that the X-ray spectrum becomes steeper while the absorption column density decreases. In Swifts UV/Optical telescope the afterglow was clearly detected up to 9 days after the burst in all 6 filters and even longer in some of the UV filters with the latest detection in the UVW1 31 days after the burst. A break at about 50 ks is clearly detected in all 6 UVOT filters from a shallow decay slope of about 0.3 and a steeper decay slope of 1.3. In addition to the swift observations we also present and discuss the results from a 61 ks ToO observation by XMM. (Abriviated)



rate research

Read More

We present the results of a detailed spectral and temporal analysis of Swift and XMM-Newton observations of the high redshift (z=3.969) GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with superimposed intense flaring activity that extended over more than two orders of magnitude in time. Seven distinct re-brightening events starting from 236 s up to 41.2 ks after the burst were observed. The underlying decay of the afterglow was well described by a double broken power-law model with breaks at t_1= 237 +/- 20 s and t_2 = 10.1 (-2.2) (+4.6) ks. The temporal decay slopes before, between and after these breaks were alpha_1 = 2.1 +/- 0.3, alpha_2 = 0.44 (-0.08) (+0.14) and alpha_3 = 2.40 (+0.07) (-0.09), respectively. The spectrum of the X-ray afterglow was well described by a photoelectrically absorbed power-law with an absorbing column density N_H=(1.28 +/- 0.26) 10^22 cm^-2 in the host galaxy. Strong X-ray spectral evolution during the flaring activity was present. In the majority of the flares (6/7) the ratio Delta_t/t_p between the duration of the event and the time when the flare peaks was nearly constant and about 0.6-0.7. We showed that the observed spectral and temporal properties of the first three flares are consistent with being due both to high-latitude emission, as expected if the flares were produced by late internal shocks, or to refreshed shocks, i.e. late time energy injections into the main afterglow shock by slow moving shells ejected from the central engine during the prompt phase. The event fully satisfies the E_p-E_iso Amati relation while is not consistent with the E_p-E_jet Ghirlanda relation.
131 - Dirk Grupe 2009
We report on 5 Chandra observations of the X-ray afterglow of the Gamma-Ray Burst GRB 060729 performed between 2007 March and 2008 May. In all five observations the afterglow is clearly detected. The last Chandra pointing was performed on 2008-May-04, 642 days after the burst - the latest detection of a GRB X-ray afterglow ever. A reanalysis of the Swift XRT light curve together with the three detections by Chandra in 2007 reveals a break at about 1.0 Ms after the burst with a slight steepening of the decay slope from alpha = 1.32 to 1.61. This break coincides with a significant hardening of the X-ray spectrum, consistent with a cooling break in the wind medium scenario, in which the cooling frequency of the afterglow crosses the X-ray band. The last two Chandra observations in 2007 December and 2008 May provide evidence for another break at about one year after the burst. If interpreted as a jet break, this late-time break implies a jet half opening angle of about 14 degrees for a wind medium. Alternatively, this final break may have a spectral origin, in which case no jet break has been observed and the half-opening angle of the jet of GRB 060729 must be larger than about 15 degrees for a wind medium. We compare the X-ray afterglow of GRB 060729 in a wind environment with other bright X-ray afterglows, in particular GRBs 061121 and 080319B, and discuss why the X-ray afterglow of GRB 060729 is such an exceptionally long-lasting event.
350 - M. S. Tashiro 2006
Results are presented of early X-ray afterglow observations of GRB 060105 by Swift and Suzaku. The bright, long gamma-ray burst GRB 060105 triggered the Swift Burst Alert Telescope (BAT) at 06:49:28 on 5 January 2006. The Suzaku team commenced a pre-planned target of opportunity observation at 19 ks (5.3 hr) after the Swift trigger. Following the prompt emission and successive very steep decay, a shallow decay was observed from T_0+187 s to T_0+1287 s. After an observation gap during T_0 +(1.5-3) ks, an extremely early steep decay was observed in T_0+(4-30) ks. The lightcurve flattened again at T_0+30 ks, and another steep decay followed from T_0+50 ks to the end of observations. Both steep decays exhibited decay indices of 2.3 - 2.4. This very early break, if it is a jet break, is the earliest case among X-ray afterglow observations, suggesting a very narrow jet whose opening angle is well below 1 degree. The unique Suzaku/XIS data allow us to set very tight upper limits on line emission or absorption in this GRB. For the reported pseudo-redshift of z=4.0+/-1.3 the upper limit on the iron line equivalent width is 50 eV.
87 - M. Perri , P. Giommi , M. Capalbi 2005
We report the results of Swift X-Ray Telescope (XRT) observations of GRB 050318. This event triggered the Burst Alert Telescope (BAT) aboard Swift and was followed-up with XRT and UVOT for 11 consecutive orbits starting from 54 minutes after the trigger. A previously unknown fading X-ray source was detected and accurately monitored. The source was found to decrease in intensity with time and a clear temporal break occurring at ~18000 s after the trigger was observed. The X-ray light curve was found to be consistent with a broken power-law with decay indices -1.17 +/- 0.08 and -2.10 (+0.22) (-0.24) before and after the break. The spectrum of the X-ray afterglow was well described by a photoelectrically absorbed power-law with energy index of -1.09 +/-0.09. No evidence of spectral evolution was found. We compare these results with those obtained with UVOT and separately reported and refine the data analysis of BAT. We discuss our results in the framework of a collimated fireball model and a synchrotron radiation emission mechanism. Assuming the GRB redshift derived from the farthest optical absorption complex (z = 1.44), the event is fully consistent with the E_p-E_iso correlation.
We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (i) an initial very steep decay (t^{-alpha} with 3<alpha_1<5), followed by (ii) a very shallow decay (0.2<alpha_2<0.8), and finally (iii) a somewhat steeper decay (1<alpha_3<1.5). These power law segments are separated by two corresponding break times, 300s<t_{break,1}<500s and 10^3s<t_{break,2}<10^4s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t_{break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (alpha_2) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t_{break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f>4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا