Do you want to publish a course? Click here

Hard X-ray Detector (HXD) on Board Suzaku

63   0   0.0 ( 0 )
 Added by Motohide Kokubun
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hard X-ray Detector (HXD) on board Suzaku covers a wide energy range from 10 keV to 600 keV by combination of silicon PIN diodes and GSO scintillators. The HXD is designed to achieve an extremely low in-orbit back ground based on a combination of new techniques, including the concept of well-type active shield counter. With an effective area of 142 cm^2 at 20 keV and 273 cm2 at 150 keV, the background level at the sea level reached ~1x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 30 keV for the PI N diodes, and ~2x10^{-5} cts s^{-1} cm^{-2} keV^{-1} at 100 keV, and ~7x10^{-6} cts s^{-1} cm^{-2} keV^{-1} at 200 keV for the phoswich counter. Tight active shielding of the HXD results in a large array of guard counters surrounding the main detector parts. These anti-coincidence counters, made of ~4 cm thick BGO crystals, have a large effective area for sub-MeV to MeV gamma-rays. They work as an excellent gamma-ray burst monitor with limited angular resolution (~5 degree). The on-board signal-processing system and the data transmitted to the ground are also described.



rate research

Read More

The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10-600 keV, energy resolutions of ~4 keV (FWHM) at 40 keV and ~11% at 511 keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5-20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15-70 and 150-500 keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.
139 - Yukikatsu Terada 2007
The hard X-ray detector (HXD) on board the X-ray satellite Suzaku is designed to have a good timing capability with a 61 $mu$s time resolution. In addition to detailed descriptions of the HXD timing system, results of in-orbit timing calibration and performance of the HXD are summarized. The relative accuracy of time measurements of the HXD event was confirmed to have an accuracy of $1.9times 10^{-9}$ s s$^{-1}$ per day, and the absolute timing was confirmed to be accurate to 360 $mu$s or better. The results were achieved mainly through observations of the Crab pulsar, including simultaneous ones with RXTE, INTEGRAL, and Swift.
Improvements of in-orbit calibration of GSO scintillators in the Hard X-ray Detector on board Suzaku are reported. To resolve an apparent change of the energy scale of GSO which appeared across the launch for unknown reasons, consistent and thorough re-analyses of both pre-launch and in-orbit data have been performed. With laboratory experiments using spare hardware, the pulse height offset, corresponding to zero energy input, was found to change by ~0.5 of the full analog voltage scale, depending on the power supply. Furthermore, by carefully calculating all the light outputs of secondaries from activation lines used in the in-orbit gain determination, their energy deposits in GSO were found to be effectively lower, by several percent, than their nominal energies. Taking both these effects into account, the in-orbit data agrees with the on-ground measurements within ~5%, without employing the artificial correction introduced in the previous work (Kokubun et al. 2007). With this knowledge, we updated the data processing, the response, and the auxiliary files of GSO, and reproduced the HXD-PIN and HXD-GSO spectra of the Crab Nebula over 12-300 keV by a broken powerlaw with a break energy of ~110 keV.
Diffuse X-rays from the Galactic center (GC) region were found to exhibit many K-shell lines from iron and nickel atoms in the 6--9 keV band. The strong emission lines seen in the spectrum are neutral iron K$alpha$ at 6.4~keV, He-like iron K$alpha$ at 6.7~keV, H-like iron Ly$alpha$ at 6.9~keV, and He-like iron K$beta$ at 7.8~keV. Among them, the 6.4~keV emission line is a probe of non-thermal phenomena. We have detected strong 6.4~keV emission in several giant molecular clouds, some of which were newly discovered by Suzaku. All the spectra exhibit large equivalent widths of 1-2~keV and absorption columns of $2-10times 10^{23}{rm H cm}^{-2}$. We found time variability of diffuse 6.4~keV emission in the Sgr B2 region comparing the maps and spectra obtained from 1994 to 2005 with ASCA, Chandra, XMM-Newton and Suzaku. We also report discovery of K$alpha$ lines of neutral argon, calcium, chrome, and manganese atoms in the Sgr~A region. We show that the equivalent width of the 6.4~keV emission line detected in X-ray faint region against the 6.4 keV-associated continuum (power-law component) is $sim 800 {rm eV}$. These features are naturally explained by the X-ray reflection nebula scenario rather than the low energy cosmic-ray electrons scenario. On the other hand, a 6.4~keV clump, G~0.162$-$0.217, discovered at the south end of the Radio Arc has a small equivalent width of 6.4~keV emission line of $sim200 {rm eV}$. The Radio Arc is a site of relativistic electrons. Thus, it is conceivable that the X-rays of G~0.162$-$0.217 are due to low energy cosmic-ray electrons
Suzaku Hard X-ray Detector (HXD) achieved the lowest background level than any other previously or currently operational missions sensitive in the energy range of 10--600 keV, by utilizing PIN photodiodes and GSO scintillators mounted in the BGO active shields to reject particle background and Compton-scattered events as much as possible. Because it does not have imaging capability nor rocking mode for the background monitor, the sensitivity is limited by the reproducibility of the non X-ray background (NXB) model. We modeled the HXD NXB, which varies with time as well as other satellites with a low-earth orbit, by utilizing several parameters, including particle monitor counts and satellite orbital/attitude information. The model background is supplied as an event file in which the background events are generated by random numbers, and can be analyzed in the same way as the real data. The reproducibility of the NXB model depends on the event selection criteria (such as cut-off rigidity and energy band) and the integration time, and the 1sigma systematic error is estimated to be less than 3% (PIN 15--40 keV) and 1% (GSO 50--100 keV) for more than 10 ksec exposure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا