Do you want to publish a course? Click here

The role of AGN feedback and gas viscosity in hydrodynamical simulations of galaxy clusters

83   0   0.0 ( 0 )
 Added by Debora Sijacki
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the imprints of AGN feedback and physical viscosity on the properties of galaxy clusters using hydrodynamical simulation models carried out with the TreeSPH code GADGET-2. Besides self-gravity of dark matter and baryons, our approach includes radiative cooling and heating processes of the gas component and a multiphase model for star formation and SNe feedback. Additionally, we introduce a prescription for physical viscosity in GADGET-2, based on a SPH discretization of the Navier-Stokes and general heat transfer equations. Adopting the Braginskii parameterization for the shear viscosity coefficient, we explore how gas viscosity influences the properties of AGN-driven bubbles. We also introduce a novel, self-consistent AGN feedback model where we simultaneously follow the growth and energy release of massive black holes embedded in a cluster environment. We assume that black holes accreting at low rates with respect to the Eddington limit are in a radiatively inefficient regime, and that most of the feedback energy will appear in a mechanical form. Thus, we introduce AGN-driven bubbles into the ICM with properties, such as radius and energy content, that are directly linked to the black hole physics. This model leads to a self-regulated mechanism for the black hole growth and overcomes the cooling flow problem in host halos, ranging from the scale of groups to that of massive clusters. (Abridged)

rate research

Read More

We use 1 kpc resolution cosmological AMR simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes (SMBH) on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a quenching model for which star formation is artificially suppressed in massive halos and finally (iii) the recently proposed AGN feedback model of Booth & Schaye (2009). Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the bright central galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converges to the correct value from below. The gas and total mass distributions are in striking agreement with observations. We also find a slight deficit (~10%) of baryons at the virial radius, due to the effect of AGN-driven shock waves pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution, that can be explained quantitatively by AC theory.
511 - D. Sijacki 2008
We investigate a numerical model for AGN feedback where for the first time a relativistic particle population in AGN-inflated bubbles is followed within a full cosmological context. In our high-resolution simulations of galaxy cluster formation, we assume that BH accretion is accompanied by energy feedback that occurs in two different modes, depending on the accretion rate itself. Unlike in previous work, we inject a non-thermal particle population of relativistic protons into the AGN bubbles, instead of adopting a purely thermal heating. We then follow the subsequent evolution of the cosmic ray (CR) plasma inside the bubbles, considering both its hydrodynamical interactions and dissipation processes relevant for the CR population. Due to the different buoyancy of relativistic plasma and the comparatively long CR dissipation timescale we find substantial changes in the evolution of clusters as a result of CR feedback. In particular, the non-thermal population can provide significant pressure support in central cluster regions at low thermal temperatures, providing a natural explanation for the decreasing temperature profiles found in cool core clusters. At the same time, the morphologies of the bubbles and of the induced X-ray cavities show a striking similarity to observational findings. AGN feedback with CRs also proves efficient in regulating cluster cooling flows so that the total baryon fraction in stars becomes limited to realistic values of the order of 10%. We find that the partial CR support of the intracluster gas also affects the expected signal of the thermal Sunyaev-Zeldovich effect, with typical modifications of the integrated Compton-y parameter within the virial radius of the order of 10%. [Abridged]
177 - Martin Jubelgas 2006
It is well known that cosmic rays (CRs) contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting that they may play an important role in regulating star formation during the formation and evolution of galaxies. We here discuss a novel numerical treatment of the physics of CRs and its implementation in the parallel smoothed particle hydrodynamics code GADGET-2. In our methodology, the non-thermal CR population of each gaseous fluid element is approximated by a simple power law spectrum in particle momentum, characterized by an amplitude, a cut-off, and a fixed slope. Adiabatic compression, and a number of physical source and sink terms are modelled which modify the CR pressure of each particle. The most important sources considered are injection by supernovae and diffusive shock acceleration, while the primary sinks are thermalization by Coulomb interactions, and catastrophic losses by hadronic interactions. We also include diffusion of CRs. Our scheme allows us to carry out the first cosmological structure formation simulations that self-consistently account for CR physics. In simulations of isolated galaxies, we find that CRs can significantly reduce the star formation efficiencies of small galaxies, with virial velocities below ~80 km/s, an effect that becomes progressively stronger towards low mass scales. In cosmological simulations at high redshift, the total mass-to-light ratio of small halos and the faint-end of the luminosity function are strongly affected. When CR acceleration in shocks is followed as well, up to ~40% of the energy dissipated at structure formation shocks can appear as CR pressure at z~3-6, but this fraction drops to ~10% at low redshifts when the shock distribution becomes increasingly dominated by lower Mach numbers. (abridged)
It is well known that cosmic rays (CRs) contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting that they may play an important role in regulating star formation during the formation and evolution of galaxies. We will present a novel numerical treatment of the physics of CRs and its implementation in the parallel smoothed particle hydrodynamics (SPH) code GADGET-2. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. In simulations of galaxy formation, we find that CRs can significantly reduce the star formation efficiencies of small galaxies. This effect becomes progressively stronger towards low mass scales. In cosmological simulations of the formation of dwarf galaxies at high redshift, we find that the total mass-to-light ratio of small halos and the faint-end of the luminosity function are affected. In high resolution simulations of galaxy clusters, we find lower contributions of CR pressure, due to the smaller CR injection efficiencies at low Mach number flow shocks inside halos, and the softer adiabatic index of CRs, which disfavours them when a composite of thermal gas and CRs is adiabatically compressed. Within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading to an enhanced compressibility of the central intra-cluster medium, an effect that increases the central density and pressure of the gas. While the X-ray luminosity in low mass cool core clusters is boosted, the integrated Sunyaev-Zeldovich effect is only slightly changed. The resolved Sunyaev-Zeldovich maps, however, show a larger variation with an increased central flux decrement.
We present a study of the galaxy population predicted by hydrodynamical simulations for a set of 19 galaxy clusters based on the GADGET-2 Tree+SPH code. These simulations include gas cooling, star formation, a detailed treatment of stellar evolution and chemical enrichment, as well as SN energy feedback in the form of galactic winds. We compute the spectro-photometric properties of the simulated galaxies. All simulations have been performed for two choices of the stellar initial mass function: a standard Salpeter IMF, and a top-heavier IMF. Several of the observational properties of the galaxy population in nearby clusters are reproduced fairly well by simulations. A Salpeter IMF is successful in accounting for the slope and the normalization of the color-magnitude relation for the bulk of the galaxy population. Simulated clusters have a relation between mass and optical luminosity which generally agrees with observations, both in normalization and slope. We find that galaxies are generally bluer, younger and more star forming in the cluster outskirts, thus reproducing the observational trends. However, simulated clusters have a total number of galaxies which is significantly smaller than the observed one, falling short by about a factor 2-3. Finally, the brightest cluster galaxies are always predicted to be too massive and too blue, when compared to observations, due to gas overcooling in the core cluster regions, even in the presence of a rather efficient SN feedback.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا