Do you want to publish a course? Click here

The Keck+Magellan Survey for Lyman Limit Absorption I: The Frequency Distribution of Super Lyman Limit Systems

56   0   0.0 ( 0 )
 Added by John M. O'Meara
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a survey for super Lyman limit systems (SLLS; defined to be absorbers with 19.0 <= log(NHI) <= 20.3 cm^-2) from a large sample of high resolution spectra acquired using the Keck and Magellan telescopes. Specifically, we present 47 new SLLS from 113 QSO sightlines. We focus on the neutral hydrogen frequency distribution f(N,X) of the SLLS and its moments, and compare these results with the Lyman-alpha forest and the damped Lyman alpha systems (DLA; absorbers with log(NHI) >= 20.3 cm^-2). We find that that f(N,X) of the SLLS can be reasonably described with a power-law of index alpha = -1.43^{+0.15}_{-0.16} or alpha = -1.19^{+0.20}_{-0.21} depending on whether we set the lower N(HI) bound for the analysis at 10^{19.0} cm^-2 or 10^{19.3}$ cm^-2, respectively. The results indicate a flattening in the slope of f(N,X) between the SLLS and DLA. We find little evidence for redshift evolution in the shape of f(N,X) for the SLLS over the redshift range of the sample 1.68 < z < 4.47 and only tentative evidence for evolution in the zeroth moment of f(N,X), the line density l_lls(X). We introduce the observable distribution function O(N,X) and its moment, which elucidates comparisons of HI absorbers from the Lyman-alpha through to the DLA. We find that a simple three parameter function can fit O(N,X) over the range 17.0 <= log(NHI) <=22.0. We use these results to predict that f(N,X) must show two additional inflections below the SLLS regime to match the observed f(N,X) distribution of the Lyman-alpha forest. Finally, we demonstrate that SLLS contribute a minor fraction (~15%) of the universes hydrogen atoms and, therefore, an even small fraction of the mass in predominantly neutral gas.



rate research

Read More

We present an absorption-line survey of optically thick gas clouds -- Lyman Limit Systems (LLSs) -- observed at high dispersion with spectrometers on the Keck and Magellan telescopes. We measure column densities of neutral hydrogen NHI and associated metal-line transitions for 157 LLSs at z=1.76-4.39 restricted to 10^17.3 < NHI < 10^20.3. An empirical analysis of ionic ratios indicates an increasing ionization state of the gas with decreasing NHI and that the majority of LLSs are highly ionized, confirming previous expectations. The Si^+/H^0 ratio spans nearly four orders-of-magnitude, implying a large dispersion in the gas metallicity. Fewer than 5% of these LLSs have no positive detection of a metal transition; by z~3, nearly all gas that is dense enough to exhibit a very high Lyman limit opacity has previously been polluted by heavy elements. We add new measurements to the small subset of LLS (~5-10) that may have super-solar abundances. High Si^+/Fe^+ ratios suggest an alpha-enhanced medium whereas the Si^+/C^+ ratios do not exhibit the super-solar enhancement inferred previously for the Lya forest.
We present the first science results from our Hubble Space Telescope Survey for Lyman limit absorption systems (LLS) using the low dispersion spectroscopic modes of the Advanced Camera for Surveys and the Wide Field Camera 3. Through an analysis of 71 quasars, we determine the incidence frequency of LLS per unit redshift and per unit path length, l(z) and l(x) respectively, over the redshift range 1 < z< 2.6, and find a weighted mean of l(x)=0.29 +/-0.05 for 2.0 < z < 2.5 through a joint analysis of our sample and that of Ribaudo et al. (2011). Through stacked spectrum analysis, we determine a median (mean) value of the mean free path to ionizing radiation at z=2.4 of lambda_mfp = 243(252)h^(-1) Mpc, with an error on the mean value of +/- 43h^(-1) Mpc. We also re-evaluate the estimates of lambda_mfp from Prochaska et al. (2009) and place constraints on the evolution of lambda_mfp with redshift, including an estimate of the breakthrough redshift of z = 1.6. Consistent with results at higher z, we find that a significant fraction of the opacity for absorption of ionizing photons comes from systems with N_HI <= 10^{17.5} cm^(-2) with a value for the total Lyman opacity of tau_lyman = 0.40 +/- 0.15. Finally, we determine that at minimum, a 5-parameter (4 power-law) model is needed to describe the column density distribution function f(N_HI, X) at z sim 2.4, find that f(N_HI,X) undergoes no significant change in shape between z sim 2.4 and z sim 3.7, and provide our best fit model for f(N_HI,X).
We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z<~1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman Limit Systems (LLSs) at zabs<1. We report five new LLSs of log N(HI)/cm^-2 >~ 17.2 over a total redshift survey pathlength of dz=9.3, and a number density of n(z)=0.43 (-0.18, +0.26). Considering all absorbers with log N(HI)/cm^-2 > 16.5 leads to n(z)=1.08 (-0.25, +0.31) at z<1. All LLSs exhibit a multi-component structure and associated metal transitions from multiple ionization states such as CII, CIII, MgII, SiII, SiIII, and OVI absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than 0.1L* at d<~300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disk, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d=15 to 72 pkpc and intrinsic luminosities from ~0.01L* to ~3L*. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.
We have obtained high signal:to:noise optical spectroscopy at 5AA resolution of 27 quasars from the APM z$>$4 quasar survey. The spectra have been analyzed to create new samples of high redshift Lyman-limit and damped Lyman-$alpha$ absorbers. These data have been combined with published data sets in a study of the redshift evolution and the column density distribution function for absorbers with $log$N(HI)$ge17.5$, over the redshift range 0.01 $<$ z $<$ 5. The main results are: begin{itemize} item Lyman limit systems: The data are well fit by a power law $N(z) = N_0(1 + z)^{gamma}$ for the number density per unit redshift. For the first time intrinsic evolution is detected in the product of the absorption cross-section and comoving spatial number density for an $Omega = 1$ Universe. We find $gamma = 1.55$ ($gamma = 0.5$ for no evolution) and $N_0 = 0.27$ with $>$99.7% confidence limits for $gamma$ of 0.82 & 2.37. item Damped lya systems: The APM QSOs provide a substantial increase in the redshift path available for damped surveys for $z>3$. Eleven candidate and three confirmed damped Ly$alpha$ absorption systems, have been identified in the APM QSO spectra covering the redshift range $2.8le z le 4.4$ (11 with $z>3.5$). Combining the APM survey confirmed and candidate damped lya absorbers with previous surveys, we find evidence for a turnover at z$sim$3 or a flattening at z$sim$2 in the cosmological mass density of neutral gas, $Omega_g$. end{itemize} The Lyman limit survey results are published in Storrie-Lombardi, et~al., 1994, ApJ, 427, L13. Here we describe the results for the DLA population of absorbers.
Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope, we target {candidate absorption host galaxies} detected in deep optical imaging {(reaching limiting apparent magnitudes of 23.0-26.5 in $g, r, i,$ and $z$ filters) in the fields of three QSOs, each of which shows the presence of high metallicity, high $N_{rm HI}$ absorption systems in their spectra (Q0826-2230: $z_{abs}$=0.9110, Q1323-0021: $z_{abs}=0.7160$, Q1436-0051: $z_{abs}=0.7377, 0.9281$). We confirm three host galaxies {at redshifts 0.7387, 0.7401, and 0.9286} for two of the Lyman-$alpha$ absorption systems (one with two galaxies interacting). For these systems, we are able to determine the star formation rates (SFRs); impact parameters (from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity.} Based on previous photometry, we find these galaxies have L$>$L$^{ast}$. The [O II] SFRs for these galaxies are in the range $11-25$ M$_{odot}$ yr$^{-1}$ {(uncorrected for dust)}, while the impact parameters lie in the range $35-54$ kpc. {Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, no gradient in metallicity is indicated between the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies.} We confirm the anti-correlation between impact parameter and $N_{rm HI}$ from the literature. We also report the emission redshift of five other galaxies: three at $z_{em}>z_{QSO}$, and two (L$<$L$^{ast}$) at $z_{em}<z_{QSO}$ not corresponding to any known absorption systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا