Do you want to publish a course? Click here

Broad Absorption Line Variability in Repeat Quasar Observations from the Sloan Digital Sky Survey

127   0   0.0 ( 0 )
 Added by Britt Lundgren
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a time-variability analysis of 29 broad absorption line quasars (BALQSOs) observed in two epochs by the Sloan Digital Sky Survey (SDSS). These spectra are selected from a larger sample of BALQSOs with multiple observations by virtue of exhibiting a broad CIV $lambda$1549 absorption trough separated from the rest frame of the associated emission peak by more than 3600 km s$^{-1}$. Detached troughs facilitate higher precision variability measurements, since the measurement of the absorption in these objects is not complicated by variation in the emission line flux. We have undertaken a statistical analysis of these detached-trough BALQSO spectra to explore the relationships between BAL features that are seen to vary and the dynamics of emission from the quasar central engine. We have measured variability within our sample, which includes three strongly variable BALs. We have also verified that the statistical behavior of the overall sample agrees with current model predictions and previous studies of BAL variability. Specifically, we observe that the strongest BAL variability occurs among the smallest equivalent width features and at velocities exceeding 12,000 km s$^{-1}$, as predicted by recent disk-wind modeling.



rate research

Read More

We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4sigma) variability in the equivalent width of the broad (~4000 km/s wide) CIV trough on rest-frame timescales as short as 1.20 days (~29 hours), the shortest broad absorption line variability timescale yet reported. The equivalent width varied by ~10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n_e > 3.9 x 10^5 cm^-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.
The variability of broad absorption lines is investigated for a sample of 188 broad-absorption-line (BAL) quasars (QSOs) ($z > 1.7$) with at least two-epoch observations from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), covering a time-scale of about 0.001 -- 3 years in the rest frame. Considering only the longest time-scale between epochs for each QSO, 73 variable regions in the civ BAL troughs are detected for 43 BAL QSOs. The proportion of BAL QSOs showing variable regions increases with longer time-interval than about 1 year in the rest frame. The velocity width of variable regions is narrow compared to the BAL-trough outflow velocity. For 43 BAL QSOs with variable regions, it is found that there is a medium strong correlation between the variation of the continuum luminosity at 1500 AA and the variation of the spectral index. With respect to the total 188 QSOs, larger proportion of BAL QSOs with variable regions appears bluer during their brighter phases, which implies that the origin of BAL variable regions is related to the central accretion process. For 43 BAL QSOs with variable regions, it is possible that there is a negative medium strong correlation between the absolute variation of the equivalent width and the mgii-based black hole mass, and a medium strong correlation between the maximum outflow velocity of variable regions and the Eddington ratio. These results imply the connection between the BAL-trough variation and the central accretion process.
We present absorption variability results for 134 bona fide mgii broad absorption line (BAL) quasars at 0.46~$lesssim z lesssim$~2.3 covering days to $sim$ 10 yr in the rest frame. We use multiple-epoch spectra from the Sloan Digital Sky Survey, which has delivered the largest such BAL-variability sample ever studied. mgii-BAL identifications and related measurements are compiled and presented in a catalog. We find a remarkable time-dependent asymmetry in EW variation from the sample, such that weakening troughs outnumber strengthening troughs, the first report of such a phenomenon in BAL variability. Our investigations of the sample further reveal that (i) the frequency of BAL variability is significantly lower (typically by a factor of 2) than that from high-ionization BALQSO samples; (ii) mgii BAL absorbers tend to have relatively high optical depths and small covering factors along our line of sight; (iii) there is no significant EW-variability correlation between mgii troughs at different velocities in the same quasar; and (iv) the EW-variability correlation between mgii and aliii BALs is significantly stronger than that between mgii and civ BALs at the same velocities. These observational results can be explained by a combined transverse-motion/ionization-change scenario, where transverse motions likely dominate the strengthening BALs while ionization changes and/or other mechanisms dominate the weakening BALs.
We systematically investigate short-timescale ($<$10-day rest-frame) CIV broad absorption-line (BAL) variability to constrain quasar-wind properties and provide insights into BAL-variability mechanisms in quasars. We employ data taken by the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, as the rapid cadence of these observations provides a novel opportunity to probe BAL variability on shorter rest-frame timescales than have previously been explored. In a sample of 27 quasars with a median of 58 spectral epochs per quasar, we have identified 15 quasars ($55^{+18}_{-14}$%), 19 of 37 CIV BAL troughs ($51^{+15}_{-12}$%), and 54 of 1460 epoch pairs ($3.7 pm 0.5$%) that exhibit significant CIV BAL equivalent-width variability on timescales of less than 10 days in the quasar rest frame. These frequencies indicate that such variability is common among quasars and BALs, though somewhat rare among epoch pairs. Thus, models describing BALs and their behavior must account for variability on timescales down to less than a day in the quasar rest frame. We also examine a variety of spectral characteristics and find that in some cases, BAL variability is best described by ionization-state changes, while other cases are more consistent with changes in covering fraction or column density. We adopt a simple model to constrain the density and radial distance of two outflows appearing to vary by ionization-state changes, yielding outflow density lower limits consistent with previous work.
We investigate broad absorption line (BAL) disappearance and emergence using a 470 BAL-quasar sample over < 0.10-5.25 rest-frame years with at least three spectroscopic epochs for each quasar from the Sloan Digital Sky Survey. We identify 14 disappearing BALs over < 1.73-4.62 rest-frame years and 18 emerging BALs over < 1.46-3.66 rest-frame years associated with the CIV 1548,1550 and/or SiIV 1393,1402 doublets, and report on their variability behavior. BAL quasars in our dataset exhibit disappearing/emerging CIV BALs at a rate of 2.3 and 3.0 per cent, respectively, and the frequency for BAL to non-BAL quasar transitions is 1.7 per cent. We detect four re-emerging BALs over < 3.88 rest-frame years on average and three re-disappearing BALs over < 4.15 rest-frame years on average, the first reported cases of these types. We infer BAL lifetimes along the line of sight to be nominally < 100-1000 yr using disappearing CIV BALs in our sample. Interpretations of (re-)emerging and (re-)disappearing BALs reveal evidence that collectively supports both transverse-motion and ionization-change scenarios to explain BAL variations. We constrain a nominal CIV/SiIV BAL outflow location of < 100 pc from the central source and a radial size of > 1x10^-7 pc (0.02 au) using the ionization-change scenario, and constrain a nominal outflow location of < 0.5 pc and a transverse size of ~0.01 pc using the transverse-motion scenario. Our findings are consistent with previous work, and provide evidence in support of BALs tracing compact flow geometries with small filling factors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا