Do you want to publish a course? Click here

Old and young bulges in late-type disk galaxies

72   0   0.0 ( 0 )
 Added by Claudia Scarlata
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

ABRIDGED: We use HSTACS and NICMOS imaging to study the structure and colors of a sample of nine late-type spirals. We find: (1) A correlation between bulge and disks scale-lengths, and a correlation between the colors of the bulges and those of the inner disks. Our data show a trend for bulges to be more metal-enriched than their surrounding disks, but otherwise no simple age-metallicity connection between these systems; (2) A large range in bulge stellar population properties, and, in particular, in stellar ages. Specifically, in about a half of the late-type bulges in our sample the bulk of the stellar mass was produced recently. Thus, in a substantial fraction of the z=0 disk-dominated bulged galaxies, bulge formation occurs after the formation/accretion of the disk; (3) In about a half of the late-type bulges in our sample, however, the bulk of the stellar mass was produced at early epochs; (4) Even these old late-type bulges host a significant fraction of stellar mass in a young(er) c component; (5) A correlation for bulges between stellar age and stellar mass, in the sense that more massive late-type bulges are older than less massive late-type bulges. Since the overall galaxy luminosity (mass) also correlates with the bulge luminosity (mass), it appears that the galaxy mass regulates not only what fraction of itself ends up in the bulge component, but also when bulge formation takes place. We show that dynamical friction of massive clumps in gas-rich disks is a plausible disk-driven mode for the formation of old late-type bulges. If disk evolutionary processes are responsible for the formation of the entire family of late-type bulges, CDM simulations need to produce a similar number of initially bulgeless disks in addition to the disk galaxies that are observed to be bulgeless at z=0.



rate research

Read More

105 - D. Pierini 2004
We present results of new Monte Carlo calculations made with the DIRTY code of radiative transfer of stellar and scattered radiation for a dusty giant late-type galaxy like the Milky Way, which illustrate the effect of the attenuation of stellar light by internal dust on the integrated photometry of the individual bulge and disk components. Here we focus on the behavior of the attenuation function, the color excess, and the fraction of light scattered or directly transmitted towards the outside observer as a function of the total amount of dust and the inclination of the galaxy, and the structure of the dusty interstellar medium (ISM) of the disk. We confirm that dust attenuation produces qualitatively and quantitatively different effects on the integrated photometry of bulge and disk, whatever the wavelength. In addition, we find that the structure of the dusty ISM affects more sensitively the observed magnitudes than the observed colors of both bulge and disk. Finally, we show that the contribution of the scattered radiation to the total monochromatic light received by the outside observer is significant, particularly at UV wavelengths, even for a two-phase, clumpy, dusty ISM. Thus understanding dust scattering properties is fundamental for the interpretation of extragalactic observations in the rest-frame UV.
108 - J. Mendez-Abreu 2010
We present high resolution absorption-line spectroscopy of 3 face-on galaxies, NGC 98, NGC 600, and NGC 1703 with the aim of searching for box/peanut (B/P)-shaped bulges. These observations test and confirm the prediction of Debattista et al. (2005) that face-on B/P-shaped bulges can be recognized by a double minimum in the profile of the fourth-order Gauss-Hermite moment h_4. In NGC 1703, which is an unbarred control galaxy, we found no evidence of a B/P bulge. In NGC 98, a clear double minimum in h_4 is present along the major axis of the bar and before the end of the bar, as predicted. In contrast, in NGC 600, which is also a barred galaxy but lacks a substantial bulge, we do not find a significant B/P shape.
By combining surface brightness profiles from images taken in the HST/NICMOS F160W and ground-based (GB) $K$ bands, we have obtained NIR profiles for a well studied sample of inclined disk galaxies, spanning radial ranges from 20 pc to a few kpc. We fit PSF-convolved Sersic-plus-exponential laws to the profiles, and compare the results with the fits to the ground-based data alone. HST profiles show light excesses over the best-fit Sersic law in the inner ~1 arcsec. This is often as a result of inner power-law cusps similar to the inner profiles of intermediate-luminosity elliptical galaxies.
We study HST/NICMOS H-band images of bulges of two equal-sized samples of early- (T(RC3) < 4) and late-type spiral (mainly Sbc-Sc) galaxies matched in outer disk axis ratio. We find that bulges of late-type spirals are more elongated than their counterparts in early-type spirals. Using a KS-test we find that the two distributions are different at the 98.4% confidence level. We conclude that the two data sets are different, i.e. late-type galaxies have a broader ellipticity distribution and contain more elongated features in the inner regions. We discuss the possibility that these would correspond to bars at a later evolutionary stage, i.e. secularly evolved bars. Consequent implications are raised, and we discuss relevant questions regarding the formation and structure of bulges. Are bulges of early-type and late-type spirals different? Are their formation scenarios different? Can we talk about bulges in the same way for different types of galaxies?
89 - C. Chiappini 2001
We analyze new measurements of the Mg_2 central line strength index and velocity dispersion (sigma) for the galaxies of the ENEAR survey. The observations are now complete (da Costa et al. 2000) and the sample contains 1223 early-type galaxies. We also analyze the line strength indices for a sample of 95 spiral bulges (from Sa to Sbc). For the early-type galaxies we find: i) that the Mg_2-sigma relation for Es and S0s are nearly the same, with both populations showing comparable scatter, and ii) a marginal difference in the slope of the Mg_2-sigma relation for cluster and field early-type galaxies. However, we suggest that before interpreting such a difference in the framework of a mass-metallicity relation, it is important to take into account the effects of rotation in the Mg_2-sigma relation. Our preliminary results indicate that once the rotation effects are minimized by choosing a sample containing only slow rotators, the Mg_2-sigma relation is similar both for isolated and clustered galaxies. More data on rotational velocities of early-type galaxies are needed to confirm this result. For spiral bulges, we find that their locus in the Mg_2-sigma plane lies always below the one occupied by early-type galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا