Do you want to publish a course? Click here

Optical spectroscopy and X-ray detections of a sample of quasars and AGN selected in the mid-infrared from two Spitzer wide-area surveys

81   0   0.0 ( 0 )
 Added by Mark Lacy
 Publication date 2006
  fields Physics
and research's language is English
 Authors M. Lacy




Ask ChatGPT about the research

We present optical spectroscopy of a sample of 77 luminous AGN and quasars selected on the basis of their mid-infrared colors. Our objects are selected from the Spitzer Extragalactic First Look Survey and SWIRE XMM-LSS fields, with a typical 24mu flux density of 5mJy. The median redshift is 0.6, with a range of ~0.05-4. Only 33% (25/77) of these objects are normal type-1 quasars, with no obscuration. 44% (34/77) are type-2 objects, with high-ionization, narrow emission lines, 14% (11/77) are dust-reddened type-1 quasars, showing broad lines but a dust-reddened or unusually weak quasar continuum. 9% (7/77) show no sign of an AGN in the optical spectrum, having either starburst spectra or spectra which could be of either starburst or LINER types. These latter objects are analogous to the X-ray detected population of AGN with weak or non-existent optical AGN emission (the ``XBONGs). 21 of our objects from the SWIRE field fall within moderately-deep XMM exposures. All the unobscured quasars, and about half the obscured quasars are detected in these exposures. This sample, when taken together with other samples of Spitzer selected AGN and quasars, and results from X-ray studies, confirms that obscured AGN dominate the AGN and quasar number counts of all rapidly-accreting supermassive black hole systems, at least for z~<4. This implies a high radiative efficiency for the black hole accretion process.



rate research

Read More

We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate Active Galactic Nuclei (AGN) selected in the mid-infrared. This survey selects both normal and obscured AGN closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L_bol~10^10L_sun, to highly luminous quasars (L_bol~10^14L_sun), and with redshifts from 0-4.3. Samples of candidate AGN were selected through mid-infrared color cuts at several different 24 micron flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGN and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type-1 AGN with blue continua, 294 (44%) are type-2 objects with extinctions A_V>~5 towards their AGN, 96 (14%) are AGN with lower extinctions (A_V~1) and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. 50% of the survey objects have L_bol >10^12L_sun, in the quasar regime. We present composite spectra for type-2 quasars and for objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared - emission-line luminosity correlation and present the results of cross-correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) there exist mid-infrared selected AGN candidates which lack AGN signatures in their optical spectra, but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGN often differ.
We present mid-infrared spectroscopy of a sample of 16 optically faint infrared luminous galaxies obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. These sources were jointly selected from Spitzer and Chandra imaging surveys in the NDWFS Bootes field and were selected from their bright X-ray fluxes to host luminous AGN. None of the spectra show significant emission from polycyclic aromatic hydrocarbons (PAHs; 6.2um equivalent widths <0.2um), consistent with their infrared emission being dominated by AGN. Nine of the X-ray sources show 9.7um silicate absorption features. Their redshifts are in the range 0.9<z<2.6, implying infrared luminosities of log(L{IR})=12.5-13.6 solar luminosities. The average silicate absorption strength is not as strong as that of previously targeted optically faint infrared luminous galaxies with similar mid-infrared luminosities implying that the X-ray selection favors sources behind a smaller column of Si-rich dust than non-X-ray selection. Seven of the X-ray sources have featureless power-law mid-IR spectra. We argue that the featureless spectra likely result from the sources having weak or absent silicate and PAH features rather than the sources lying at higher redshifts where these features are shifted out of the IRS spectral window. We investigate whether there are any correlations between X-ray and infrared properties and find that sources with silicate absorption features tend to have fainter X-ray fluxes and harder X-ray spectra, indicating a weak relation between the amount of silicate absorption and column density of X-ray-absorbing gas.
We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
101 - C. Vignali 2007
Over the last few years, optical, mid-infrared and X-ray surveys have brought to light a significant number of candidate obscured AGN and, among them, many Type 2 quasars, the long-sought after big cousins of local Seyfert 2 galaxies. However, despite the large amount of multi-wavelength data currently available, a proper census and a panchromatic view of the obscured AGN/quasar population are still missing, mainly due to observational limitations. Here we provide a review of recent results on the identification of obscured AGN, focusing primarily on the population of Type 2 quasars selected in the optical band from the Sloan Digital Sky Survey.
The XMM-Newton survey of the Small Magellanic Cloud (SMC) revealed 3053 X-ray sources with the majority expected to be active galactic nuclei (AGN) behind the SMC. However, the high stellar density in this field often does not allow assigning unique optical counterparts and hinders source classification. On the other hand, the association of X-ray point sources with radio emission can be used to select background AGN with high confidence, and to constrain other object classes like pulsar wind nebula. To classify X-ray and radio sources, we use clear correlations of X-ray sources found in the XMM-Newton survey with radio-continuum sources detected with ATCA and MOST. Deep radio-continuum images were searched for correlations with X-ray sources of the XMM-Newton SMC-survey point-source catalogue as well as galaxy clusters seen with extended X-ray emission. Eighty eight discrete radio sources were found in common with the X-ray point-source catalogue in addition to six correlations with extended X-ray sources. One source is identified as a Galactic star and eight as galaxies. Eight radio sources likely originate in AGN that are associated with clusters of galaxies seen in X-rays. One source is a PWN candidate. We obtain 43 new candidates for background sources located behind the SMC. A total of 24 X-ray sources show jet-like radio structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا