Do you want to publish a course? Click here

On the Possibility of Identification of a Short/Hard Burst GRB 051103 with the Giant Flare from a Soft Gamma Repeater in the M81 Group of Galaxies

46   0   0.0 ( 0 )
 Added by Raphail Aptekar
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The light curve, energy characteristics, and localization of a short/hard GRB 051103 burst are considered. Evidence in favor of identifying this event with a giant flare from a soft gamma repeater in the nearby M81 group of interacting galaxies is discussed.



rate research

Read More

GRB 051103 is considered to be a candidate soft gamma repeater (SGR) extragalactic giant magnetar flare by virtue of its proximity on the sky to M81/M82, as well as its time history, localization, and energy spectrum. We have derived a refined interplanetary network localization for this burst which reduces the size of the error box by over a factor of two. We examine its time history for evidence of a periodic component, which would be one signature of an SGR giant flare, and conclude that this component is neither detected nor detectable under reasonable assumptions. We analyze the time-resolved energy spectra of this event with improved time- and energy resolution, and conclude that although the spectrum is very hard, its temporal evolution at late times cannot be determined, which further complicates the giant flare association. We also present new optical observations reaching limiting magnitudes of R > 24.5, about 4 magnitudes deeper than previously reported. In tandem with serendipitous observations of M81 taken immediately before and one month after the burst, these place strong constraints on any rapidly variable sources in the region of the refined error ellipse proximate to M81. We do not find any convincing afterglow candidates from either background galaxies or sources in M81, although within the refined error region we do locate two UV bright star forming regions which may host SGRs. A supernova remnant (SNR) within the error ellipse could provide further support for an SGR giant flare association, but we were unable to identify any SNR within the error ellipse. These data still do not allow strong constraints on the nature of the GRB 051103 progenitor, and suggest that candidate extragalactic SGR giant flares will be difficult, although not impossible, to confirm.
The giant flares of soft gamma-ray repeaters (SGRs) have long been proposed to contribute to at least a subsample of the observed short gamma-ray bursts (GRBs). In this paper, we perform a comprehensive analysis of the high-energy data of the recent bright short GRB 200415A, which was located close to the Sculptor galaxy. Our results suggest that a magnetar giant flare provides the most natural explanation for most observational properties of GRB 200415A, including its location, temporal and spectral features, energy, statistical correlations, and high-energy emissions. On the other hand, the compact star merger GRB model is found to have difficulty reproducing such an event in a nearby distance. Future detections and follow-up observations of similar events are essential to firmly establish the connection between SGR giant flares and a subsample of nearby short GRBs.
413 - K. Hurley , T. Cline , E. Mazets 1998
Soft gamma repeaters are high-energy transient sources associated with neutron stars in young supernova remnants. They emit sporadic, short (~ 0.1 s) bursts with soft energy spectra during periods of intense activity. The event of March 5, 1979 was the most intense and the only clearly periodic one to date. Here we report on an even more intense burst on August 27, 1998, from a different soft gamma repeater, which displayed a hard energy spectrum at its peak, and was followed by a ~300 s long tail with a soft energy spectrum and a dramatic 5.16 s period. Its peak and time integrated energy fluxes at Earth are the largest yet observed from any cosmic source. This event was probably initiated by a massive disruption of the neutron star crust, followed by an outflow of energetic particles rotating with the period of the star. Comparison of these two bursts supports the idea that magnetic energy plays an important role, and that such giant flares, while rare, are not unique, and may occur at any time in the neutron stars activity cycle.
The light curve, energy spectra, energetics, and IPN localization of an exceedingly intense short duration hard spectrum burst, GRB 070201, obtained from Konus-Wind, INTEGRAL (SPI-ACS), and MESSENGER data are presented. The total fluence of the burst and the peak flux are $S = 2.00_{-0.26}^{+0.10} times 10^{-5}$ erg cm$^{-2}$ and $F_{max} = 1.61_{-0.50}^{+0.29} times 10^{-3}$ erg cm$^{-2}$ s$^{-1}$. The IPN error box has an area of 446 square arcminutes and covers the peripheral part of the M31 galaxy. Assuming that the source of the burst is indeed in M31 at a distance of 0.78 Mpc, the measured values of the fluence $S$ and maximum flux $F_{max}$ correspond to a total energy of $Q = 1.5 times 10^{45}$ erg, and a maximum luminosity $L = 1.2 times 10^{47}$ erg s$^{-1}$. These data are in good agreement with the corresponding characteristics of the previously observed giant flares from other soft gamma repeaters. The evidence for the identification of this event as a giant flare from a soft gamma repeater in the M31 galaxy is presented.
165 - J. Gorosabel 2001
We report optical observations of the short/hard burst GRB 010119 error box, one of the smallest error boxes reported to date for short/hard GRBs. Limits of R > 22.3 and I > 21.2 are imposed by observations carried out 20.31 and 20.58 hours after the gamma-ray event, respectively. They represent the most constraining limits imposed to date on the optical emission from a short/hard gamma-ray burst afterglow.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا