Do you want to publish a course? Click here

SDSS AGNs with X-ray Emission from ROSAT PSPC Pointed Observations

100   0   0.0 ( 0 )
 Added by Anatoly A. Suchkov
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a sample of 1744 type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS DR4) spectroscopic catalog with X-ray counterparts in the White-Giommi-Angelini Catalog (WGACAT) of ROSAT PSPC pointed observations. Of 1744 X-ray sources, 1410 (80.9%) are new AGN identifications. Of 4574 SDSS DR4 AGNs for which we found radio matches in the catalog of radio sources from the FIRST catalog, 224 turned up in our sample of SDSS X-ray AGNs. The sample objects are given in a catalog that contains optical and X-ray parameters along with radio emission parameters where available. We illustrate the content of our catalog and its potential for AGN science by providing statistical relationships for the catalog data. The potential of the morphological information is emphasized by confronting the statistics of optically resolved and unresolved AGNs. The immediate properties of the catalog objects include significant correlation of X-ray and optical fluxes, which is consistent with expectations. Also expected is the decrease of X-ray flux toward higher redshifts. The X-ray to optical flux ratio for the unresolved AGNs exhibits a decline toward higher redshifts, in agreement with previous results. The resolved AGNs, however, display the opposite trend. At a given optical brightness, X-ray fluxes of radio-quiet AGNs by a factor of 2. We caution, however, that because of the variety of selection effects present in both the WGACAT and the SDSS, the interpretation of any relationships based on our sample of X-ray AGNs requires a careful analysis of these effects.



rate research

Read More

We analyse the ROSAT PSPC spectrum of 19 X-ray selected Narrow Emission Line Galaxies (NELGs) discovered during the optical identification of sources in the ROSAT UK Deep Survey. Their properties are compared to those of broad line Active Galactic Nuclei (AGN) in the same sample. Counts in three spectral bands have been extracted for all the sources, and have been fitted with a power-law model assuming the Galactic value for NH. The average slope of NELGs is alpha=0.45+-0.09, whilst for the AGN it is alpha=0.96+-0.03. The power-law model is a good fit for ~90% of NELGs and ~75% of AGN. Recent work shows that the fractional surface density of NELGs increases with respect to AGN at faint fluxes. Thus they are expected to be an important component of the residual soft (<2 keV) X--ray background. The slope of the X--ray background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1) but our results show that it is consistent with the summed spectrum of the NELGs in the deep survey (alpha~0.4). This may finally reconcile the spectrum of the background with the properties of the sources that constitute it.
142 - M. Ehle 1997
The nearly face-on SBc galaxy M83 (NGC 5236) was observed for 25 ksec with the ROSAT PSPC. We detected 13 point-like sources in this galaxy, 10 of which were previously unknown. We measured extended X-ray radiation from almost the whole optically visible galaxy. Comparing the diffuse soft and hard X-ray emission components, we observed a different asymmetric distribution and a slower radial decrease of the intensity profile of the soft X-ray emission. Both these results support the existence of a huge spherical gas halo of 10-15 kpc radius. On the other hand, the radial scale lengths of the hard X-ray radiation, that of the thermal radio emission and the profile of the optical surface brightness are similar, favouring the idea that all these emission processes are connected to star formation in the galaxys disk. M83 is the first face-on galaxy where the diffuse X-ray emission spectrum can be characterized by a two-temperature thermal plasma: a soft X-ray emitting warm `halo component and an internally absorbed hot `disk component which is dominating the emission in the hard (0.5-2.0 keV) ROSAT energy range. The combination of X-ray and radio polarization observations allows an estimate of the plasma parameter beta = U_therm/U_magn which is found to be 0.2+/-0.1. This result supports the hypothesis that magnetic fields play an important role for the evolution and structure of galactic gas haloes. The high energy input rate in the active star-forming disk of M83 seems to be responsible for the outflow of hot gas and the halo formation.
143 - K. Beuermann 2008
We present an in-flight calibration of the ROSAT PSPC using the incident spectra of the hot white dwarf HZ43 and the polar AM Her. We derive an absolute flux calibration of the PSPC using the accurately known soft X-ray spectrum of HZ43. Corrections to the PSPC response matrix are derived from a comparison of predicted and observed PSPC spectra of HZ43, supplemented by results for AM Her. The calibration of the PSPC for photon energies E < 0.28 keV is found to be accurate to better than 5% refuting earlier reports of a major miscalibration. Our corrections to the detector response matrices remove systematic residuals in the pulse height spectra of soft sources.
We present the ROSAT PSPC pointed and ROSAT All-Sky Survey (RASS) observations and the results of our low and high spectral resolution optical follow-up observations of the T Tauri stars (TTS) and X-ray selected T Tauri star candidates in the region of the high galactic latitude dark cloud MBM12 (L1453-L1454, L1457, L1458). Previous observations have revealed 3 classical T Tauri stars and 1 weak-line T Tauri star along the line of sight to the cloud. Because of the proximity of the cloud to the sun, all of the previously known TTS along this line of sight were detected in the 25 ks ROSAT PSPC pointed observation of the cloud. We conducted follow-up optical spectroscopy at the 2.2-meter telescope at Calar Alto to look for signatures of youth in additional X-ray selected T Tauri star candidates. These observations allowed us to confirm the existence of 4 additional TTS associated with the cloud and at least 2 young main sequence stars that are not associated with the cloud and place an upper limit on the age of the TTS in MBM12 ~ 10 Myr. The distance to MBM12 has been revised from the previous estimate of 65+-5 pc to 65+-35 pc based on results of the Hipparcos satellite. At this distance MBM12 is the nearest known molecular cloud to the sun with recent star formation. We estimate a star-formation efficiency for the cloud of 2-24%. We have also identified a reddened G9 star behind the cloud with Av ~ 8.4-8.9 mag. Therefore, there are at least two lines of sight through the cloud that show larger extinctions (Av > 5 mag) than previously thought for this cloud. This higher extinction explains why MBM12 is capable of star-formation while most other high-latitude clouds are not.
This paper reports the results of the analysis of the second ROSAT PSPC survey of M31 performed in summer 1992. We compare our results with those of the first survey. Within the ~10.7 deg^2 field of view, 396 individual X-ray sources are detected in the second survey data, of which 164 are new detections. When combined with the first survey, this result in a total of 560 X-ray sources in the field of M31. Their (0.1 keV - 2.0 keV) fluxes range from 7 x 10^-15 to 7.6 x 10^-12 erg cm^-2 s^-1, and of these 560 sources, 55 are tentatively identified with foreground stars, 33 with globular clusters, 16 with supernova remnants, and 10 with radio sources and galaxies (including M32). A comparison with the results of the Einstein M31 survey reveals 491 newly detected sources, 11 long term variable sources, and 7 possible transient sources. Comparing the two ROSAT surveys, we come up with 34 long term variable sources and 8 transient candidates. For the M31 sources, the observed luminosities range from 4 x 10^35 to 4 x 10^38 erg s^-1. The total (0.1 keV - 2.0 keV) luminosity of M31 is (3.4+-0.3) x 10^39 erg s^-1, distributed approximately equally between the bulge and disk. Within the bulge region, the luminosity of a possible diffuse component combined with faint sources below the detection threshold is (2.0+-0.5) x 10^38 erg s^-1. An explanation in terms of hot gaseous emission leads to a maximum total gas mass of (1.0+-0.3) x 10^6 M_sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا