Do you want to publish a course? Click here

SFI++ I: A New I-band Tully-Fisher Template, the Cluster Peculiar Velocity Dispersion and H0

329   0   0.0 ( 0 )
 Added by Karen Masters
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The SFI++ consists of ~5000 spiral galaxies which have measurements suitable for the application of the I-band Tully-Fisher (TF) relation. This sample builds on the SCI and SFI samples published in the 1990s but includes significant amounts of new data as well as improved methods for parameter determination. We derive a new I-band TF relation from a subset of this sample which consists of 807 galaxies in the fields of 31 nearby clusters and groups. This sample constitutes the largest ever available for the calibration of the TF template and extends the range of line-widths over which the template is reliably measured. Careful accounting is made of observational and sample biases such as incompleteness, finite cluster size, galaxy morphology and environment. We find evidence for a type-dependent TF slope which is shallower for early type than for late type spirals. The line-of-sight cluster peculiar velocity dispersion is measured for the sample of 31 clusters. This value is directly related to the spectrum of initial density fluctuations and thus provides an independent verification of the best fit WMAP cosmology and an estimate of Omega^0.6 sigma_8 = 0.52+/-0.06. We also provide an independent measure of the TF zeropoint using 17 galaxies in the SFI++ sample for which Cepheid distances are available. In combination with the ``basket of clusters template relation these calibrator galaxies provide a measure of H0 = 74+/-2 (random) +/-6 (systematic) km/s/Mpc.



rate research

Read More

We present the SFI++ dataset, a homogeneously derived catalog of photometric and rotational properties and the Tully-Fisher distances and peculiar velocities derived from them. We make use of digital optical images, optical long-slit spectra, and global HI line profiles to extract parameters of relevance to disk scaling relations, incorporating several previously published datasets as well as a new photometric sample of some 2000 objects. According to the completeness of available redshift samples over the sky area, we exploit both a modified percolation algorithm and the Voronoi-Delaunay method to assign individual galaxies to groups as well as clusters, thereby reducing scatter introduced by local orbital motions. We also provide corrections to the peculiar velocities for both homogeneous and inhomogeneous Malmquist bias, making use of the 2MASS Redshift Survey density field to approximate large scale structure. We summarize the sample selection criteria, corrections made to raw observational parameters, the grouping techniques, and our procedure for deriving peculiar velocities. The final SFI++ peculiar velocity catalog of 4861 field and cluster galaxies is large enough to permit the study not just of the global statistics of large scale flows but also of the {it details} of the local velocity field.
76 - R. Giovanelli 1996
Infrared I band photometry and velocity widths for galaxies in 24 clusters, with radial velocities between 1,000 and 10,000 kms, are used to construct a template Tully--Fisher (TF) relation. The sources of scatter in the TF diagram are analyzed in detail; it is shown that the common practice of referring to a single figure of TF scatter is incorrect and can lead to erroneous bias corrections. Biases resulting from sample incompleteness, catalog inaccuracies, cluster size and other sources, as well as dependences of TF parameters on morphological type and local environment, are discussed and appropriate corrections are obtained. A template TF relation is constructed by combining the data from the 24 clusters, and kinematic cluster offsets from a putative reference frame which well approximates null velocity with respect to the cosmic microwave background, are obtained.
51 - R. Giovanelli 1996
Observational parameters which can be used for redshift-independent distance determination using the Tully-Fisher (TF) technique are given for 782 spiral galaxies in the fields of 24 clusters or groups. I band photometry for the full sample was either obtained by us or compiled from published literature. Rotational velocities are derived either from 21 cm spectra or optical emission line long--slit spectra, and converted to a homogeneous scale. In addition to presenting the data, a discussion of the various sources of error on TF parameters is introduced, and the criteria for the assignment of membership to each cluster are given. The construction of a TF template, bias corrections and cluster motions are discussed in an accompanying paper.
478 - E. Kourkchi 2011
We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21<M_R<-15$ mag. This paper (paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using {it pPXF (penalised PiXel Fitting)} and using the Calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation ($Lproptosigma^alpha$) and find that the slope of the relation is $alpha=1.99pm0.14$ for galaxies brighter than $M_Rsimeq-16$ mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in paper II.
164 - Karen L. Masters 2014
The 2 Micron All-Sky Survey (2MASS) Tully-Fisher Survey (2MTF) aims to measure Tully-Fisher (TF) distances to all bright inclined spirals in the 2MASS Redshift Survey (2MRS). Essential to this project is a universal calibration of the TF relation in the 2MASS J (1.2 um), H (1.6 um) and K (2.2 um) bands. We present the first bias corrected or universal TF template in these bands. We find that the slope of the TF relation becomes steeper as the wavelength increases being close to L propto v^4 in K-band and L propto v^3.6 in J and H-bands. We also investigate the dependence on galaxy morphology showing that in all three bands the relation is steeper for later type spirals which also have a dimmer TF zeropoint than earlier type spirals. We correct the final relation to that for Sc galaxies. Finally we study the scatter from the TF relation fitting for a width dependent intrinsic scatter which is not found to vary significantly with wavelength.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا