Do you want to publish a course? Click here

The Mid-IR Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy

79   0   0.0 ( 0 )
 Added by Bernhard Brandl
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 5-38um mid-infrared spectra at a spectral resolution of R~65-130 of a large sample of 22 starburst nuclei taken with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra show a vast range in starburst SEDs. The silicate absorption ranges from essentially no absorption to heavily obscured systems with an optical depth of tau(9.8um)~5. The spectral slopes can be used to discriminate between starburst and AGN powered sources. The monochromatic continuum fluxes at 15um and 30um enable a remarkably accurate estimate of the total infrared luminosity of the starburst. We find that the PAH equivalent width is independent of the total starburst luminosity L_IR as both continuum and PAH feature scale proportionally. However, the luminosity of the 6.2um feature scales with L_IR and can be used to approximate the total infrared luminosity of the starburst. Although our starburst sample covers about a factor of ten difference in the [NeIII]/[NeII] ratio, we found no systematic correlation between the radiation field hardness and the PAH equivalent width or the 7.7um/11.3um PAH ratio. These results are based on spatially integrated diagnostics over an entire starburst region, and local variations may be ``averaged out. It is presumably due to this effect that unresolved starburst nuclei with significantly different global properties appear spectrally as rather similar members of one class of objects.



rate research

Read More

286 - V. Charmandaris 2009
We performed an analysis of the mid-infared properties of the 12micron Seyfert sample, a complete unbiased 12micron flux limited sample of local Seyfert galaxies selected from the IRAS Faint Source Catalog, based on low resolution spectra obtained with the Infrared Spectrograph (IRS) on-board Spitzer Space Telescope. A detailed presentation of this analysis is dicussed in Wu et al. (2009). We find that on average, the 15-30micron slope of the continuum is -0.85+/-0.61 for Seyfert 1s and -1.53+/-0.84 for Seyfert 2s, and there is substantial scatter in each type. Moreover, nearly 32% of Seyfert 1s, and 9% of Seyfert 2s, display a peak in the mid-infrared spectrum at 20micron, which is attributed to an additional hot dust component. The Polycyclic Aromatic Hydrocarbon (PAH) equivalent width decreases with increasing dust temperature, as indicated by the global infrared color of the host galaxies. However, no statistical difference in PAH equivalent width is detected between the two Seyfert types, 1 and 2, of the same bolometric luminosity. Finally, we propose a new method to estimate the AGN contribution to the integrated 12micron galaxy emission, by subtracting the star formation component in the Seyfert galaxies, making use of the tight correlation between PAH 11.2micron luminosity and 12micron luminosity for star forming galaxies.
We present a study of elemental abundances in a sample of thirteen Blue Compact Dwarf (BCD) galaxies, using the $sim$10--37$mu$m high resolution spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, though sulfur is under-abundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon, sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, oxygen) studies reveals a good overall agreement for sulfur, while the infrared derived neon abundances are slightly higher than the optical values. This indicates that either the metallicities of dust enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.
60 - H.W.W. Spoon , L. Armus , J. Cami 2004
We report the detection of strong absorption and weak emission features in the 4--27 micron Spitzer-IRS spectrum of the distant ultraluminous infrared galaxy (ULIRG) IRAS F00183--7111 (z=0.327). The absorption features of CO2 and CO gas, water ice, hydrocarbons and silicates are indicative of a strongly obscured (A[9.6]>=5.4; A[V]>=90) and complex line of sight through both hot diffuse ISM and shielded cold molecular clouds towards the nuclear power source. From the profile of the 4.67 micron CO fundamental vibration mode we deduce that the absorbing gas is dense (n~10^6 cm^-3) and warm (720 K) and has a CO column density of ~10^19.5 cm^-2, equivalent to N[H]~10^23.5 cm^-2. The high temperature and density, as well as the small infered size (<0.03pc), locates this absorbing gas close to the power source of this region. Weak emission features of molecular hydrogen, PAHs and Ne+, likely associated with star formation, are detected against the 9.7 micron silicate feature, indicating an origin away from the absorbing region. Based on the 11.2 micron PAH flux, we estimate the star formation component to be responsible for up to 30% of the IR luminosity of the system. While our mid-infrared spectrum shows no tell-tale signs of AGN activity, the similarities to the mid-infrared spectra of deeply obscured sources (e.g. NGC4418) and AGN hot dust (e.g. NGC1068), as well as evidence from other wavelength regions, suggest that the power source hiding behind the optically thick dust screen may well be a buried AGN.
We present an atlas of Spitzer/IRS high resolution (R~600) 10-37um spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons. Six out of the eight objects with a known AGN component show emission of the high excitation [NeV] line. This line is also seen in one other object (NGC4194) with, a priori, no known AGN component. In addition to strong polycyclic aromatic hydrocarbon emission features in this wavelength range (11.3, 12.7, 16.4um), the spectra reveal other weak hydrocarbon features at 10.6, 13.5, 14.2um, and a previously unreported emission feature at 10.75um. An unidentified absorption feature at 13.7um is detected in many of the starbursts. We use the fine-structure lines to derive the abundance of neon and sulfur for 14 objects where the HI 7-6 line is detected. We further use the molecular hydrogen lines to sample the properties of the warm molecular gas. Several basic diagrams characterizing the properties of the sample are also shown. We have combined the spectra of all the pure starburst objects to create a high S/N template, which is available to the community.
Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا