The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries?


Abstract in English

We imaged five objects near the star forming clouds of Ophiuchus with the Keck Laser Guide Star AO system. We resolved Allers et al. (2006)s #11 (Oph 16222-2405) and #16 (Oph 16233-2402) into binary systems. The #11 object is resolved into a 243 AU binary, the widest known for a very low mass (VLM) binary. The binary nature of #11 was discovered first by Allers (2005) and independently here during which we obtained the first spatially resolved R~2000 near-infrared (J & K) spectra, mid-IR photometry, and orbital motion estimates. We estimate for 11A and 11B gravities (log(g)>3.75), ages (5+/-2 Myr), luminosities (log(L/Lsun)=-2.77+/-0.10 and -2.96+/-0.10), and temperatures (Teff=2375+/-175 and 2175+/-175 K). We find self-consistent DUSTY evolutionary model (Chabrier et al. 2000) masses of 17+4-5 MJup and 14+6-5 MJup, for 11A and 11B respectively. Our masses are higher than those previously reported (13-15 MJup and 7-8 MJup) by Jayawardhana & Ivanov (2006b). Hence, we find the system is unlikely a ``planetary mass binary, (in agreement with Luhman et al. 2007) but it has the second lowest mass and lowest binding energy of any known binary. Oph #11 and Oph #16 belong to a newly recognized population of wide (>100 AU), young (<10 Myr), roughly equal mass, VLM stellar and brown dwarf binaries. We deduce that ~6+/-3% of young (<10 Myr) VLM objects are in such wide systems. However, only 0.3+/-0.1% of old field VLM objects are found in such wide systems. Thus, young, wide, VLM binary populations may be evaporating, due to stellar encounters in their natal clusters, leading to a field population depleted in wide VLM systems.

Download