Do you want to publish a course? Click here

Empirical Corrections for Charge Transfer Inefficiency and Associated Centroid Shifts for STIS CCD Observations

106   0   0.0 ( 0 )
 Added by Paul Goudfrooij
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A variety of on-orbit imaging and spectroscopic observations are used to characterize the Charge Transfer Efficiency (CTE) of the Charge-Coupled Device (CCD) of the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. A set of formulae is presented to correct observations of point sources for CTE-related loss of signal. For data taken in imaging mode, the CTE loss is parametrized in terms of the location of the source on the CCD, the source signal level within the measurement aperture, the background level, and the time of observation. For spectroscopic data, it is found that one additional parameter is needed to provide an adequate calibration of the CTE loss, namely the signal in the point spread function located between the signal extraction box and the read-out amplifier. The effect of the latter parameter is significant for spectra taken using the G750L or G750M gratings of STIS. The algorithms presented here correct flux calibration inaccuracies due to CTE losses as large as 30% to within ~ 1.5% RMS throughout the wavelength range covered by the STIS CCD modes. This uncertainty is similar to the Poisson noise associated with a source detected at a signal level of about 2500 electrons per resolution element. Using bi-directional CCD readouts, centroid shifts incurred due to CTE loss are also derived. A tight correlation is found between the CTE loss and the centroid shift (both for imaging and spectroscopic modes), thus enabling one to correct for both effects of imperfect charge transfer to STIS CCD observations.



rate research

Read More

We present experimental studies on the charge transfer inefficiency (CTI) of charge-coupled device (CCD) developed for the soft X-ray imaging telescope, Xtend, aboard the XRISM satellite. The CCD is equipped with a charge injection (CI) capability, in which sacrificial charge is periodically injected to fill the charge traps. By evaluating the re-emission of the trapped charge observed behind the CI rows, we find that there are at least three trap populations with different time constants. The traps with the shortest time constant, which is equivalent to a transfer time of approximately one pixel, are mainly responsible for the trailing charge of an X-ray event seen in the following pixel. A comparison of the trailing charge in two clocking modes reveals that the CTI depends not only on the transfer time but also on the area, namely the imaging or storage area. We construct a new CTI model with taking into account with both transfer-time and area dependence. This model reproduces the data obtained in both clocking modes consistently. We also examine apparent flux dependence of the CTI observed without the CI technique. The higher incident X-ray flux is, the lower the CTI value becomes. It is due to a sacrificial charge effect by another X-ray photon. This effect is found to be negligible when the CI technique is used.
We present HST/STIS observations of the optical counterpart (OT) of the gamma-ray burster GRB 000301C obtained on 2000 March 6, five days after the burst. CCD clear aperture imaging reveals a R ~ 21.50+/-0.15 source with no apparent host galaxy. An 8000 s, 1150 < lambda/A < 3300 NUV-MAMA prism spectrum shows a relatively flat continuum (in f_lambda) between 2800 and 3300 A, with a mean flux 8.7 (+0.8,-1.6)+/- 2.6 10^(-18) ergs/s/cm^2/A, and a sharp break centered at 2797+/-25 A. We interpret it as HI Lyman break at z = 2.067+/-0.025 indicating the presence of a cloud with a HI column density log(HI) > 18 on the line-of-sight to the OT. This value is conservatively a lower limit to the GRB redshift. However, the facts that large N(HI) system are usually considered as progenitors of present day galaxies and that other OTs are found associated with star forming galaxies strongly suggest that it is the GRB redshift. In any case, this represents the largest direct redshift determination of a gamma-ray burster to date. Our data are compatible with an OT spectrum represented by a power-law with an intrinsic index alpha = 1.2((f_nu propto nu^-alpha) and no extinction in the host galaxy or with alpha = 0.5 and extinction by a SMC-like dust in the OT rest-frame with A_V = 0.15. The large N(HI) and the lack of detected host is similar to the situation for damped Ly-alpha absorbers at z > 2.
157 - Richard Massey 2014
Charge-Coupled Device (CCD) detectors, widely used to obtain digital imaging, can be damaged by high energy radiation. Degraded images appear blurred, because of an effect known as Charge Transfer Inefficiency (CTI), which trails bright objects as the image is read out. It is often possible to correct most of the trailing during post-processing, by moving flux back to where it belongs. We compare several popular algorithms for this: quantifying the effect of their physical assumptions and tradeoffs between speed and accuracy. We combine their best elements to construct a more accurate model of damaged CCDs in the Hubble Space Telescopes Advanced Camera for Surveys/Wide Field Channel, and update it using data up to early 2013. Our algorithm now corrects 98% of CTI trailing in science exposures, a substantial improvement over previous work. Further progress will be fundamentally limited by the presence of read noise. Read noise is added after charge transfer so does not get trailed - but it is incorrectly untrailed during post-processing.
Radiation damage to space-based Charge-Coupled Device (CCD) detectors creates defects which result in an increasing Charge Transfer Inefficiency (CTI) that causes spurious image trailing. Most of the trailing can be corrected during post-processing, by modelling the charge trapping and moving electrons back to where they belong. However, such correction is not perfect -- and damage is continuing to accumulate in orbit. To aid future development, we quantify the limitations of current approaches, and determine where imperfect knowledge of model parameters most degrade measurements of photometry and morphology. As a concrete application, we simulate $1.5times10^{9}$ worst case galaxy and $1.5times10^{8}$ star images to test the performance of the Euclid visual instrument detectors. There are two separable challenges: If the model used to correct CTI is perfectly the same as that used to add CTI, $99.68$ % of spurious ellipticity is corrected in our setup. This is because readout noise is not subject to CTI, but gets over-corrected during correction. Second, if we assume the first issue to be solved, knowledge of the charge trap density within $Deltarho/rho!=!(0.0272pm0.0005)$ %, and the characteristic release time of the dominant species to be known within $Deltatau/tau!=!(0.0400pm0.0004)$ % will be required. This work presents the next level of definition of in-orbit CTI calibration procedures for Euclid.
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earths radiation belts. The primary effect of the damage was to increase the charge transfer inefficiency (CTI) of the eight front illuminated CCDs by more than two orders of magnitude. The ACIS instrument team is continuing to study the properties of the damage with an emphasis on developing techniques to mitigate CTI and spectral resolution degradation. We present the initial temperature dependence of ACIS CTI from -120 to -60 degrees Celsius and the current temperature dependence after more than six years of continuing slow radiation damage. We use the change of shape of the temperature dependence to speculate on the nature of the damaging particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا