Radio Sources Toward Galaxy Clusters at 30 GHz


Abstract in English

Extra-galactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zeldovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of mJy source fluxes from 89 fields centered on known massive galaxy clusters and 8 non-cluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5 arcmin of the cluster center) are a factor of 8.9 (+4.3,-2.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5 arcmin). Counts in the outer regions of the cluster fields are in turn a factor of 3.3 (+4.1,-1.8) greater than those in the non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of alpha = 0.66 with an rms dispersion of 0.36, where flux is proportional to frequency raised to negative alpha. The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.

Download