Do you want to publish a course? Click here

Discovery of an X-ray Jet and Extended Jet Structure in the Quasar PKS 1055+201

106   0   0.0 ( 0 )
 Added by Daniel A. Schwartz
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

This letter reports rich X-ray jet structures found in the Chandra observation of PKS 1055+201. In addition to an X-ray jet coincident with the radio jet we detect a region of extended X-ray emission surrounding the jet as far from the core as the radio hotspot to the North, and a similar extended X-ray region along the presumed path of the unseen counterjet to the Southern radio lobe. Both X-ray regions show a similar curvature to the west, relative to the quasar. We interpret this as the first example where we separately detect the X-ray emission from a narrow jet and extended, residual jet plasma over the entire length of a powerful FRII jet.



rate research

Read More

We have made a 30 ksec Chandra observation of the redshift z=0.63 GPS quasar B2 0738+313. We detected X-ray emission from the core and have discovered a 200 kpc (projected on the sky) X-ray jet. The X-ray jet is narrow and curves, following the extended radio structure to the south of the quasar, and ending with a hot spot at the southernmost part of the radio lobe. The jet has a knot at ~13 arcsec away from the core. The knot emission is consistent with the X-rays being created by the inverse Compton scattering of the cosmic microwave background (CMB) photons and requires jet bulk Lorentz factors of a few (Gamma_{bulk} ~ 5-7). We discuss the emission mechanisms that may be responsible for the jet emission. We present new VLA data of the core and jet, and discuss the relation between the extended radio and X-ray emission. Extended emission observed in several GPS sources has been interpreted as a signature of the source past activity, while the GPS source is young and newly expanded. We argue that B2~0738+313 may be an example of a new class of radio sources similar to the FRII radio galaxies in their high jet bulk velocities, but with the powerful GPS-like nucleus. B2 0738+313 also has two damped Lyman-alpha systems along the line of sight, at z_{abs} = 0.0912 and 0.2212. We discuss the possible connection between the X-ray absorption (7.2+/-0.9 e20 cm(-2)) detected in the ACIS spectrum and these two intervening absorbers. We also investigate an extended structure within the central 10 arcsec of the core in the relation to structure seen in the optical.
Chandra observations of the low-energy peaked BL Lac object AP Librae revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first low energy peaked BL Lac object with an extended non-thermal X-ray jet that shows emission into the VHE range. The X-ray jet has an extension of ~15 (~ 14 kpc). The X-ray jet morphology is similar to the radio jet observed with VLA at 1.36 GHz emerging in south-east direction and bends by 50 degrees at a distance of 12 towards north-east. The intensity profiles of the X-ray emission are studied consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse Compton dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC dominated and thus more similar to the high luminosity FRII sources than to the low luminosity FRI objects, which are usually considered to be the parent population of the BL Lac objects.
67 - D.A. Schwartz 2000
The quasar PKS 0637-753, the first celestial X-ray target of the Chandra X-ray Observatory, has revealed asymmetric X-ray structure extending from 3 to 12 arcsec west of the quasar, coincident with the inner portion of the jet previously detected in a 4.8 GHz radio image (Tingay et al. 1998). At a redshift of z=0.651, the jet is the largest (~100 kpc) and most luminous (~10^{44.6} ergs/s) of the few so far detected in X-rays. This letter presents a high resolution X-ray image of the jet, from 42 ks of data when PKS 0637-753 was on-axis and ACIS-S was near the optimum focus. For the inner portion of the radio jet, the X-ray morphology closely matches that of new ATCA radio images at 4.8 and 8.6 GHz. Observations of the parsec scale core using the VSOP space VLBI mission show structure aligned with the X-ray jet, placing important constraints on the X-ray source models. HST images show that there are three small knots coincident with the peak radio and X-ray emission. Two of these are resolved, which we use to estimate the sizes of the X-ray and radio knots. The outer portion of the radio jet, and a radio component to the east, show no X-ray emission to a limit of about 100 times lower flux. The X-ray emission is difficult to explain with models that successfully account for extra-nuclear X-ray/radio structures in other active galaxies. We think the most plausible is a synchrotron self-Compton (SSC) model, but this would imply extreme departures from the conventional minimum-energy and/or homogeneity assumptions. We also rule out synchrotron or thermal bremsstrahlung models for the jet X-rays, unless multicomponent or ad hoc geometries are invoked.
We investigate the X-ray properties of PG 1004+130, a low-redshift radio-loud broad absorption line (BAL) quasar with a hybrid FR I/FR II radio morphology. The 22.2 ks XMM-Newton and 41.6 ks Chandra observations presented here are the first X-ray detections of PG 1004+130 and constitute the highest spectral quality X-ray observations of a radio-loud BAL quasar available to date. The Chandra ACIS-S spectrum shows evidence for complex soft X-ray absorption not detected in the data obtained 1.7 yr previously with XMM-Newton, with a best-fit intrinsic column density of N_H=1.2e22 cm-2 for the preferred partial-covering model. There is no significant difference in the hard-band power-law photon index of ~1.5 between the two observations. The Chandra image also reveals extended X-ray emission ~8 (30 kpc) south-east of the nucleus, aligned with the FR I jet but upstream of the 1.4 GHz radio-brightness peak. The jet is not detected by HST, and the optical upper limit rules out a simple single-component synchrotron interpretation of the radio-to-X-ray emission. The multiwavelength characteristics of the PG 1004+130 jet, including its relatively flat X-ray power law and concave spectral energy distribution, are similar to those of powerful FR II jets. The lack of strong beaming in PG 1004+130 limits the efficiency of inverse Compton upscattering, and we consider the X-ray emission to most likely arise from a second synchrotron component generated by highly energetic electrons.
217 - J.Kataoka , G.Madejski , M.Sikora 2007
We present the results from a multiwavelength campaign of the powerful Gamma-ray quasar PKS 1510-089. This campaign commenced with a deep Suzaku observation lasting three days for a total exposure time of 120 ks, and continued with Swift monitoring over 18 days. Besides Swift observations, the campaign included ground-based optical and radio data, and yielded a quasi-simultaneous broad-band spectral energy distribution from 10^9 Hz to 10^{19} Hz. The Suzaku observation provided a high S/N X-ray spectrum, which is well represented by an extremely hard power-law with photon index Gamma ~ 1.2, augmented by a soft component apparent below 1 keV, which is well described by a black-body model with temperature kT ~ 0.2 keV. Monitoring by Suzaku revealed temporal variability which is different between the low and high energy bands, again suggesting the presence of a second, variable component in addition to the primary power-law emission.We model the broadband spectrum of PKS 1510-089 assuming that the high energy spectral component results from Comptonization of infrared radiation produced by hot dust located in the surrounding molecular torus. In the adopted internal shock scenario, the derived model parameters imply that the power of the jet is dominated by protons but with a number of electrons/positrons exceeding a number of protons by a factor ~10. We also find that inhomogeneities responsible for the shock formation, prior to the collision may produce bulk-Compton radiation which can explain the observed soft X-ray excess and possible excess at ~18 keV. We note, however, that the bulk-Compton interpretation is not unique, and the observed soft excess could arise as well via some other processes discussed briefly in the text.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا